No. of Printed Pages: 3

MMTE-005

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination

00918

June, 2015

MMTE-005: CODING THEORY

Time: 2 hours Maximum Marks: 50

(Weightage: 50%)

Note: Answer any five questions from questions no. 1 to

6. Use of calculator is **not** allowed.

1. (a) Define Hamming distance and Hamming weight. Illustrate them with the help of examples.

3

(b) Define a self-orthogonal code and give an example of self-orthogonal code.

3

(c) Write down the generator matrix of the Reed-Muller code R (2, 4).

4

2. (a) Check whether the following code is a cyclic code or not:

{000, 011, 101, 110}

Justify your answer.

2

- (b) Find the dual code of a code C whose generator matrix is $G = \begin{bmatrix} 1 & 0 & 1 & 1 \\ & & & \\ 0 & 1 & 1 & 2 \end{bmatrix}$ over F_3 .
- (c) Let $f(x) = x^3 + 2x^2 + 1 \in \mathbf{F}_3[x]$.
 - (i) Prove that f(x) is irreducible over \mathbf{F}_5 .
 - (ii) Check whether the polynomial is primitive or not.
- 3. (a) Factorize $x^9 1$. If α is a primitive 9^{th} root of unity in \mathbf{F}_{64} , show that

$$M_{\alpha}(x) = x^6 + x^3 + 1.$$
 5

5

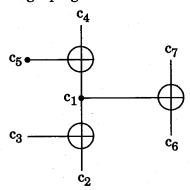
3

(b) State the MacWilliams equations. Also find the weight enumerator of the binary code with generator matrix

$$\begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}.$$

- 4. (a) Construct the syndrome table for the code with generator matrix $\begin{bmatrix} 1 & 0 & 1 \\ & & & \\ 0 & 1 & 1 \end{bmatrix}$.
 - (b) Let $n = \frac{q^r 1}{q 1}$, where gcd(r, q 1) = 1. Let C be the narrow sense BCH code with defining set $T = C_1$. Prove that C is the Hamming code $H_{q, r}$.

- 5. (a) Let $p \neq 3$ be an odd prime. Show that 3 is a square modulo p, if and only if $p \equiv \pm 1 \pmod{12}$.
- 6
- (b) If $f(x) \in \mathbf{Z}_4[x]$ is a basic irreducible polynomial, prove that f(x) is a primary polynomial.


4

6. (a) Draw the State diagram and the Trellis diagram for the convolutional code with generator matrix $G = [1 + D^2 \ 1 + D + D^2]$.

(b) Find the parity check matrix for code with Tanner graph given below:

3

(c) Give an example of Z₄-linear code of length
2 with 16 elements.

2