M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination
June, 2015
00968
MMTE-002 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 2 hours
Maximum Marks : 50
Note: Question no. 6 is compulsory. Answer any four questions from the remaining questions. Calculators are not allowed.

1. (a) Give an algorithm in pseudocode to find the maximum element of an array of n integers. Also, find the running time of your algorithm.
(b) Sort the following numbers using Heapsort algorithm :

$$
8,3,2,9,10,5,6 .
$$

2. (a) Sort the following numbers using radix sort algorithm showing all the steps :
[3567, 4098, 6804, 8573, 2784, 7348, 5740, 7642, 2430, 9248\}.
(b) Write an algorithm to implement disjoint-set forest with union-by-rank heuristic.
3. (a) Give an optimal parenthesisation of matrix chain product whose sequence of dimensions is $\{15,10,4,10,5\}$. Show all the steps in the Dynamic programming algorithm.
(b) Find the minimum cost spanning tree for the following graph using Kruskal's algorithm :

4. (a) For the polynomials $g(x)=x^{2}+5 x+2$ and $h(x)=x^{2}-3 x+1$, find the point value representation using the points $[1,-1, i,-i]$. Use the representation to multiply the polynomials in coefficient form.
(b) Find the maximum-size subset of mutually compatible activities for the following set S of activities, which is sorted in monotonically increasing order of finish time :

i	1	2	3	4	5	6	7	8	9
$\mathrm{~s}_{\mathrm{i}}$	1	3	0	5	3	5	6	8	8
f_{i}	5	6	7	8	9	10	11	12	13

5. (a) Use the Bellman-Ford algorithm to find the shortest paths from the source vertex s to all the other vertices in the following graph :

(b) Use the repeated squaring algorithm to find $5^{31}(\bmod 91)$. Show all your steps.
6. (a) Rank the following functions by the order of growth :

$$
i_{n}, e^{n}, 2^{n}, n^{\log \log n}
$$

(b) Is the sequence

$$
<23,18,15,7,14,11,2,6,8,13>
$$

a max-heap? Justify your answer.
(c) For solving fractional knapsack problem, which one of the following approaches will you use?
(i) Greedy algorithm
(ii) Dynamic programming
(d) "The depth search tree of a given graph is unique." Comment on the statement with justification.
(e) Give an example of a spurious hit in Rabin-Karp string matching algorithm.2

