M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

प155 Term-End Examination June, 2015

MMTE-001: GRAPH THEORY

Time : 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note: Question no. 1 is compulsory. Answer any four out of the remaining six (Q. 2 to 7). Calculating devices are not allowed.

1. State whether the following statements are true or false, with a brief justification :

$$
5 \times 2=10
$$

(a) There is a unique graph of order 5 which is isomorphic to its complement.
(b) The Petersen graph is 2 -colourable.
(c) The number of vertices of even degree in a graph must be odd.
(d) A graph of order n has at most ($n-2$) cut vertices.
(e) If a graph is 4-colourable, then it is planar.
2. (a) Prove that a connected graph is Eulerian, if and only if all its vertices have even degree.
(b) Prove that the following two graphs are isomorphic :

3. (a) If T is a tree with k edges and G is a simple graph with minimum degree at least k, then prove that T is a subgraph of G.
(b) Compute the diameter and radius of the complete bipartite graph $\mathrm{K}_{\mathrm{m}, \mathrm{n}}$, where $\mathrm{m} \geq 2, \mathrm{n} \geq 2$.
(c) Apply Prim's algorithm to the following graph :

4. (a) Define perfect matching in a graph and find a perfect matching in the following graph :

Also find $\alpha(G), \beta(G), \alpha^{\prime}(G)$ and $\beta^{\prime}(G)$ for the graph given above.
(b) Prove that every component of the symmetric difference of two matchings is a path or an even cycle.
5. (a) Define a hypercube Q_{k} and prove that Q_{k} is k-connected.
(b) Test if the following sequence is graphic using Havel-Hakimi algorithm :
$5,5,5,5,5,4,4,4,4,3,3,3,2,2,1,1$
(c) If f is a feasible flow in a network and $[\mathrm{S}, \mathrm{T}]$ is a source/sink cut, then prove that the net flow out of S and net flow into T equals val(f).
6. (a) If G is an interval graph, show that $\chi(G)=\omega(G)$.
(b) Draw a simple graph G with $\kappa(G)=1$, $\kappa^{\prime}(G)=2$ and $\delta(G)=3$.
(c) Let G be a simple graph with at least three vertices and $\delta(G) \geq \frac{n(G)}{2}$. Prove that G is a Hamiltonian graph.
7. (a) Prove that K_{5} cannot be drawn on the plane without crossing of edges.
(b) Prove that a graph G is bipartite, if and only if the dual G* is Eulerian.
(c) Prove that a simple graph in G is 2-connected, if and only if for every triple (x, y, z) of distinct vertices, G has an $x-z$ path through y.

