M.Sc. (MATHEMATICS WITH APPLICATIONS

 IN COMPUTER SCIENCE)M.Sc. (MACS)

00758 Term-End Examination June, 2015

MMT-007 : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : 2 hours
Maximum Marks : 50
(Weightage : 50\%)
Note: Question no. 1 is compulsory. Attempt any four questions out of questions no. 2 to 7. Use of calculators is not allowed. All computations may be kept to three decimal places.

1. State whether the following statements are true or false. Justify your answer with the help of a short proof or a counter example.
(a) The explicit scheme :

$$
u_{i}^{n+1}=u_{i}^{n}+\lambda\left[u_{i+1}^{n}-2 u_{i}^{n}+u_{i-1}^{n}\right],
$$

$\lambda=\mathrm{k} / \mathrm{h}^{2}$, for solving the parabolic equation $u_{t}=u_{x x}$ is stable for $\lambda<1$.
(b) If $\mathrm{F}^{\mathbf{- 1}}$ denotes Fourier Inverse Transform, then

$$
\mathrm{F}^{-1}\left[\mathrm{e}^{-|\alpha|} \cos \alpha\right]=\frac{1}{2 \pi}\left[\frac{1}{(\mathrm{x}+1)^{2}+1}+\frac{1}{(\mathrm{x}-1)^{2}+1}\right] .
$$

(c) The function $y(t)$ satisfying the integral equation

$$
y(t)+\int_{0}^{t} y(z) \cdot(t-z) d z=t
$$

is $y(t)=\sin t$.
(d) If $\mathrm{J}_{\mathrm{n}}(\mathrm{x})$ is Bessel's function, then

$$
J_{1}^{\prime}(x)=-J_{0}(x) .
$$

(e) For $\mathrm{h}>0.0278$ the fourth order Runge-Kutta method when used to solve the initial value problem

$$
y^{\prime}=-100 y, y(0)=1
$$

produces stable result.
2. (a) Find the series solution, near $x=0$, of the differential equation

$$
\begin{equation*}
x(1-x) y^{\prime \prime}+(1-x) y^{\prime}-y=0 \tag{7}
\end{equation*}
$$

(b) Using Runge-Kutta fourth order formula, with $h=0 \cdot 2$, solve $\frac{d y}{d x}=1+y^{2}$ for $y(0 \cdot 2)$.
3. (a) Show that $\int_{0}^{\infty} e^{-s t} L_{n}(t) d t=\frac{1}{s}\left(1-\frac{1}{s}\right)^{n}$, where $L_{n}(t)$ is a Laguerre polynomial.
(b) Using Fourier transforms, solve the differential equation

$$
y^{\prime}-5 y=H(x) e^{-2 x},-\infty<x<\infty
$$

where $H(x)$ is the unit step function.
(c) Using Schmidt method, with $\lambda=\frac{1}{6}$, find the solution of initial value problem $\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}$ with $u(0, t)=0=u(1, t)$ and $u(x, 0)=\left\{\begin{array}{ccc}2 x & \text { for } & 0<x<1 / 2 \\ 2(1-x) & \text { for } & 1 / 2<x<1,\end{array}\right.$
with $\mathrm{h}=0.2$.
4. (a) Prove that

$$
\begin{equation*}
J_{3 / 2}(x)=\sqrt{\frac{2}{\pi x}}\left[\frac{1}{x} \sin x-\cos x\right] \tag{3}
\end{equation*}
$$

(b) Find the Laplace transform of the function

$$
f(t)=\left\{\begin{array}{cc}
3 t, & 0<t<\pi \tag{3}\\
\pi-2 t, & \pi<t<2 \pi
\end{array}\right.
$$

(c) Solve the boundary value problem $\frac{d^{2} y}{d x^{2}}=y$ with $y(1)=1$ and $y(0)=0$, using second order finite difference method with $\mathrm{h}=\frac{1}{3}$.
5. (a) Using Laplace Transforms, solve $\frac{\partial^{2} u}{\partial t^{2}}=9 \frac{\partial^{2} u}{\partial x^{2}}$ given that $u(0, t)=u(2, t)=0$, $u_{t}(x, 0)=0$ and $u(x, 0)=10 \sin 2 \pi x$.
(b) Find the solution of boundary value problem $\nabla^{2} u=0$ in R, where $u=x+y$ on the boundary, using Galerkin method with triangular element. Take $h=\frac{1}{2}$ and R is the square $0 \leq \mathrm{x} \leq 1,0 \leq \mathrm{y} \leq 1$.
6. (a) Construct the Green's function for the boundary value problem

$$
\begin{equation*}
y^{\prime \prime}-16 y=0, y(0)=0=y(1) \tag{5}
\end{equation*}
$$

(b) The five point formula for Poisson equation

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=G(x, y) \text { is } \\
& u_{i+1, j}+u_{i-1, j}+u_{i, j+1}+u_{i, j-1}-4 u_{i, j}=h^{2} G\left(x_{i}, y_{j}\right)
\end{aligned}
$$

Using Taylor series expansions, find the order of this five-point formula.
7. (a) Find Fourier Cosine transform of the function

$$
\mathrm{f}(\mathrm{t})=\left\{\begin{array}{ccc}
\mathrm{t} & , & 0<\mathrm{t}<1 / 2 \\
1-\mathrm{t} & , & 1 / 2<\mathrm{t}<1 \\
0 & , & \mathrm{t}>1
\end{array}\right.
$$

(b) Heat conduction equation $u_{t}=u_{x x}$ is approximated by the method

$$
u_{m}^{n+1}-u_{m}^{n-1}=\frac{2 k}{h^{2}} \delta_{k}^{2} u_{m}^{n}
$$

Investigate the stability of this method using Von Neumann Method.
(c) Solve the initial value problem $y^{\prime}=-2 x y^{2}$, $y(0)=1$ with $h=0.2$ on the interval $[0,0.4]$ using the predictor-corrector method

$$
\begin{aligned}
& P: y_{k+1}=y_{k}+\frac{h}{2}\left(3 y_{k}^{\prime}-y_{k-1}^{\prime}\right) \\
& C: y_{k+1}=y_{k}+\frac{h}{2}\left(y_{k+1}^{\prime}+y_{k}^{\prime}\right)
\end{aligned}
$$

Perform two corrector iterations per step. Use the exact solution $\mathrm{y}(\mathrm{x})=\frac{1}{1+\mathrm{x}^{2}}$ to obtain the starting value.

