No. of Printed Pages: 3

MMT-006

M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination

-00098

June, 2015

MMT-006 : FUNCTIONAL ANALYSIS

Time : 2 hours

Maximum Marks : 50 (Weightage : 70%)

Note : Question no. 1 is **compulsory**. Attempt any **four** of the remaining questions.

- 1. State whether the following statements are *true* or *false*. Give a brief justification, with a short proof or a counter example, to support your answer. $5\times 2=10$
 - (a) The image of a convex set under a real linear functional is an interval.
 - (b) In a Banach space, every absolutely convergent series is convergent.
 - (c) If X is a normed linear space, $x, y \in X$ and f(x) = f(y) for every $f \in X'$, then x = y.
 - (d) If M is a linear subspace of a Hilbert space H and if $M^{\perp} = (0)$, then M = H.
 - (e) A bounded linear operator A on an infinite-dimensional Hilbert space cannot be compact, if $A^3 = I$.

MMT-006

- 2. (a) Prove that a normed linear space is finite-dimensional, if the unit ball is compact.
 - (b) If a Hilbert space H has a countably infinite orthonormal basis, then show that H is linearly isometric to l^2 .
 - (c) Prove or disprove : Every bounded linear operator on a complex Hilbert space has an eigenvalue.
- 3. (a) If (a_n) is a sequence such that $(a_n b_n)$ converges to zero for every sequence (b_n) converging to zero, then prove that $(a_n) \in l^{\infty}$.
 - (b) Let X be a Banach space, and $A_1B \in BL(X)$. Show that if B is compact, the spectra of A and A + B are the same, except for eigenvalues.
 - (c) Find $\{(1, 1, 0), (1, 0, -1)\}^{\perp}$ in \mathbb{R}^3 .
- 4. (a) Give an example of a compact self-adjoint operator on l^2 , with justification.
 - (b) Give an example of a non-zero bounded linear operator that is not open, with justification.
 - (c) Prove that the dual of c_0 is linearly isometric to l^1 .

MMT-006

2

3

4

3

4 2

4

2

5

3

- (a) If f is a linear functional on a normed linear space whose zero space Z(f) is closed, prove that f is continuous.
 - (b) Let X be a Banach space with norm $\|\cdot\|$. Let $l^{\infty}(X)$ denote the linear space of bounded sequences in X. Show that $l^{\infty}(X)$ is a Banach space with norm $\|\|(\mathbf{x}_n)\|_{\infty} := \sup_n \|\|\mathbf{x}_n\|$.
 - (c) Let H be a Hilbert space and let u, v ∈ H.
 Define Ax = < x, u > v, x ∈ H. Prove that A is a linear, compact operator.
- 6. (a) Compute the norm of the linear map $(\mathbb{C}^2, \|\cdot\|_1) \rightarrow (\mathbb{C}^2, \|\cdot\|_{\infty}), (\mathbf{z}_1, \mathbf{z}_2) \rightarrow (\mathbf{z}_1, \mathbf{z}_2).$ 2
 - (b) Prove that a bounded linear operator A on a Hilbert space H is normal iff $|| A^* x || = || Ax || \forall x \in H$.
 - (c) Let X be the real normed linear space $(\mathbb{C}^4, \|\cdot\|)$ and let $Y = \mathbb{R}^2$ be its subspace. Prove that Y is a closed subspace of X and that X/Y is a normed linear space. Further, give 2 distinct elements of X/Y with positive norm.

MMT-006

1,000

5

2

5

3

3

3