M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
 M.Sc. (MACS)

Term-End Examination

June, 2015

00898

MMT-005 : COMPLEX ANALYSIS

$$
\text { Time : } 1 \frac{1}{2} \text { hours }
$$

Maximum Marks : 25

Note: Question no. 1 is compulsory. Attempt any three questions from questions no. 2 to 5. Use of calculator is not allowed.

1. State giving reasons whether the following statements are true or false :
(a) The function $\mathrm{f}(\mathrm{z})$

$$
=\frac{\left(x^{3}-y^{3}\right)+i\left(x^{3}+y^{3}\right)}{x^{2}+y^{2}}, z \neq 0,
$$

$f(0)=0$, is differentiable at 0 .
(b) Product of two harmonic functions is harmonic.
(c) The function $f(z)=\frac{\sin z}{z^{3}}, z \neq 0$, has a pole of order 3 at $z=0$.
(d) If C: $|z|=1$ and $f(z)=\frac{\sin z}{\left(z-\frac{\pi}{6}\right)(z-2)}$ then

$$
\oint_{\mathbf{C}} \mathrm{f}(\mathrm{z}) \mathrm{dz}=2 \pi \mathrm{i} .
$$

(e) $\sin \left(\frac{1}{z}\right)$ has a simple pole at $z=0$.
2. (a) State Cauchy Riemann equations in Polar form and use them to find the harmonic conjugate of $u(r, \theta)=\ln r, r>0$.
(b) Find Laurent's expansion of

$$
\begin{equation*}
f(z)=\frac{1}{z^{2}-3 z+2} \text { in the region } 1<|z|<2 \tag{2}
\end{equation*}
$$

3. Evaluate $\int_{-\infty}^{+\infty} \frac{\mathrm{dx}}{\left(\mathrm{x}^{2}+1\right)^{3}}$ using contour integration. 5
4. (a) Use Residue theorem to evaluate $\int_{C} \frac{e^{i z} d z}{\sin z}$ where C is a positively oriented quadrilateral with vertices $\pm 2 \pm 3$ i.
(b) Find the radius of convergence of the series
$\sum_{n=0}^{\infty} \frac{n!z^{n}}{n^{2}}$. Also find the domain of convergence of the series.
5. (a) If $f(z)$ is an entire function such that

$$
\begin{align*}
& |f(z)| \leq e^{\operatorname{Im} z} \forall z \text {, show that } f(z)=a e^{-i z} \\
& \text { where }|a| \leq 1 . \tag{2}
\end{align*}
$$

(b) Prove that Möbius transformation

$$
\mathrm{w}=\frac{2 \mathrm{z}-1}{2-\mathrm{z}} \text { maps unit disc to itself. }
$$

