M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)

M.Sc. (MACS)

पロ:6

Term-End Examination
June, 2015

MMT-004 : REAL ANALYSIS

Time: 2 hours

Maximum Marks : 50
(Weightage : 70\%)

Note: Question no. 1 is compulsory. Attempt any four questions from questions no. 2 to 7. Calculators are not allowed.

1. State whether the following statements are True or False. Give reasons for your answer. $\quad 5 \times 2=10$
(a) Every Cauchy sequence in a metric space is convergent.
(b) The set of all non-zero real numbers with usual metric is connected.
(c) The point $(0,0,0)$ is a stationary point for the following function :
$\mathbf{f}: \mathbf{R}^{\mathbf{3}} \rightarrow \mathbf{R}$ defined by
$f(x, y, z)=\left(y-x^{2}\right)\left(y-2 x^{2}\right)+z$.
(d) The function $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ defined by
$f(x)=\left\{\begin{array}{lll}1, & \text { if } & x \in Q \\ 0, & \text { if } & x \notin Q\end{array}\right.$, where Q is the set of all rational numbers, is Lebesgue Integrable.
(e) Every infinite set in a metric space has a limit point.
2. (a) State the Inverse Function theorem for \mathbf{R}^{n}. Use the Inverse Function theorem to check the local invertibility of the function $\mathrm{f}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ defined by

$$
f(x, y)=\left(x^{2}-y^{2}, 2 x y\right)
$$

(b) Let d and D be metrics defined on $\mathbf{R} \times \mathbf{R}$ as
$\mathrm{d}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right),\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right)=\left|\mathrm{x}_{1}-\mathrm{y}_{1}\right|+\left|\mathrm{x}_{2}-\mathrm{y}_{2}\right|$
$\mathrm{D}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right),\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right)=\sqrt{\left(\mathrm{x}_{1}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{x}_{2}-\mathrm{y}_{2}\right)^{2}}$
Show that d and D are equivalent metrics on $\mathbf{R} \times \mathbf{R}$.
(c) Prove that the outer measure of the interval [3,5] is 2 .
3. (a) Define a path connected set in a metric space.

Let $B=\{(x, y) \mid 0 \leq d(x, y) \leq 2\}$.
Find a path from
(i) $(-1,0)$ to $(1,0)$
(ii) $\left(-1, \frac{1}{2}\right)$ to $\left(1, \frac{1}{2}\right)$.

Also give an example of a set which is not path connected set.
(b) Check whether the following function is Lebesgue measurable or not:

$$
f(x)=\left\{\begin{array}{lll}
x^{2}, & \text { if } & x \in Q \\
-x^{2}, & \text { if } & x \notin Q
\end{array}\right.
$$

where Q is the set of all rational numbers.
(c) Find the convolution $\mathrm{f} * \mathrm{~g}$ of the following function:

$$
\begin{aligned}
& \mathrm{f}(\mathrm{t})=\frac{\mathrm{t}^{1 / 3}}{1-2(1-\mathrm{t})^{1 / 3}}, 0<\mathrm{t}<1 \\
& \mathrm{~g}(\mathrm{t})=1-2 \mathrm{t}^{1 / 3}, 0<\mathrm{t}<1
\end{aligned}
$$

4. (a) If a set E has finite measure, then show that $L^{2}(E) \subset L^{1}(E)$.
(b) Let $\left(\mathrm{X}, \mathrm{d}_{1}\right),\left(\mathrm{Y}, \mathrm{d}_{2}\right)$ be two metric spaces and $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$. When is f said to be continuous at $x_{0} \in X$? Show that f is continuous at x_{0}, if and only if for every sequence $\left\{x_{n}\right\}$ in X converging to x_{0}, the sequence $\left\{f\left(x_{n}\right)\right\}$ converges to $f\left(x_{0}\right)$ in Y.
(c) Find the extreme values of the function $\mathrm{z}=2 \mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+3 \mathrm{x}_{3}^{2}+10 \mathrm{x}_{1}+8 \mathrm{x}_{2}+6 \mathrm{x}_{3}-100$ subject to the constraint

$$
x_{1}+x_{2}+x_{3}=20 ; x_{1}, x_{2}, x_{3}, \geq 0 .
$$

5. (a) Show that if $f:\left(X, d_{1}\right) \rightarrow\left(Y, d_{2}\right)$, where X is compact is continuous, then f is uniformly continuous.
(b) Let $\left\{f_{n}\right\}$ be a monotonically increasing sequence of non-negative measurable functions defined on a measurable set E. Let $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for each $x \in E$. Show that $\lim _{n \rightarrow \infty} \int_{E} f_{n} d m=\int_{E} f d m$.
6. (a) State Fatou's Lemma. Show by an example that the inequality in the lemma cannot be replaced by equality.
(b) Let $\mathrm{X}=\mathbf{R}^{2}$ with the discrete metric d. Then show that the sequence $\left\{\left(\frac{1}{n}, \frac{1}{n}\right)\right\}_{n=1}^{\infty}$ does not converge to (0,0).
(c) Let $f(x, y, z)=x^{2} e^{y}, g(x, y, z)=y^{2} e^{x z}$ and $\phi=(\mathbf{f}, \mathbf{g})$. Find $\phi^{\prime \prime}(1,2,3)$.
7. (a) Define the terms : interior, closure and boundary of any subset of a metric space. Find the interior, boundary and closure of the subset A of \mathbf{R}^{2}, where $A=\left\{(x, y) \in R^{2}: x^{2}+y^{2}=1\right\}$, with the usual metric.
(b) Let the frequency response H (iw) be given by $H(i w)=\left\{\begin{array}{lc}1, & -W<w<W \\ 0, & \text { otherwise }\end{array}\right.$
Find the system response to the signal $f(t)=e^{i \frac{w}{7} t}+4 e^{i \frac{w}{5} t}+7 e^{i 2 w t}$.
(c) Find the Fourier cosine series for

$$
\begin{equation*}
\mathrm{f}(\mathrm{t})=\mathrm{t}, 0<\mathrm{t}<2 . \tag{2}
\end{equation*}
$$

