M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE)
M.Sc. (MACS)
$\square \square 4 G$ Term-End Examination
June, 2015

MMT-003 : ALGEBRA

Time : 2 hours
Maximum Marks : 50
(Weightage : 70\%)
Note: Question no. 1 is compulsory. Answer any four questions from questions no. 2 to 6. Use of calculator is not allowed.

1. State with reasons, which of the following statements are True and which are False : $\quad 5 \times 2=10$
(a) The system of congruences

$$
\begin{aligned}
& 2 x \equiv 3(\bmod 2) \\
& 3 x \equiv 2(\bmod 3)
\end{aligned}
$$

has a unique solution modulo 6 .
(b) The splitting field of a polynomial $f(x)$ over a finite field F is finite.
(c) If a finite group G acts on a finite set S, then $G_{g s}=G_{s}$ for all $s \in X$ and $g \in G$.
(d) If G is a finite group of order 16 , then G cannot have an irreducible representation of degree greater than two.
(e) If p, q are primes and p is a quadratic residue modulo q , then q is a quadratic residue modulo p.
2. (a) Show that the finite field \mathbf{F}_{16} contains a subfield of order 4 , but not of order 8 .
(b) What are the degrees of splitting fields of the polynomials
(i) $f(x)=x^{4}-1$
(ii) $g(x)=x^{4}+1$
over \mathbf{Q} ?
3
(c) State and prove Chinese Remainder Theorem.
3. (a) How many Sylow 11 -subgroups are there for a group G of order 484 ?
(b) How many irreducible representations are there for the cyclic group $\mathrm{C}_{3}=\left\{1, \mathrm{a}, \mathrm{a}^{2}\right\}$?
(c) Let G be a group and $\rho: \mathrm{G} \rightarrow \mathrm{GL}(\mathrm{n}, \mathbf{R})$ be a faithful representation. Suppose $\rho(\mathrm{g})$ is a diagonal matrix $\forall \mathrm{g} \in \mathrm{G}$. Show that G is abelian.
(d) Is there a field of order 9 ? If yes, list all the elements of the field.
4. (a) Show that $h\left(e^{i \theta}\right)=\left[\begin{array}{cc}e^{i \theta} & e^{i 2 \theta}-e^{i \theta} \\ 0 & e^{i 2 \theta}\end{array}\right]$
is a representation of the circle group $\mathrm{S}^{1} \cong \mathrm{SO}(2)$.
(b) Let $S=\left\{\overline{1}, \overline{2}, \ldots, \frac{\overline{p-1}}{2}\right\}$ be the subset of residue classes modulo p. For $s \in S$ and $a \in \mathbf{Z}, p \times a$, let $e_{B}(a)$ be such that $s a=e_{s}(a)$ a. Show that $\left(\frac{a}{p}\right)=\prod_{B \in S} e_{s}(a)$.
(c) Show that the number of irreducible representations of a finite group G does not exceed the number of elements in the group.
5. (a) Find a generator for the cyclic multiplicative group \mathbf{F}_{7}^{*} (of the field \mathbf{F}_{7}), $\mathrm{F}_{7}^{*}=\mathrm{F}_{7} \backslash\{0\}$.
(b) Let F be a field of characteristic $\neq 2$. Let α and β be roots of $X^{2}-a \in F(X)$ and $\mathrm{X}^{2}-\mathrm{b} \in \mathrm{F}(\mathrm{X})$, respectively. Show that $(\alpha+\beta)$ is a root of

$$
X^{4}-2(a+b) X^{2}+(a-b)^{2}
$$

(c) Let $G=\left\{1, a, a^{2}\right\}$ be the cyclic group of order 3 and let ρ be a representation of G given by $\rho(a)=\left(\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right)$.
Check whether ρ is irreducible.
6. (a) Suppose K is an extension field of F and the degree $[\mathrm{K}: F]=17$. Show that if $a \in K \backslash F$, then the degree of a is 17 over F.
(b) Let $\sigma \in A_{n}$. If $Z(\sigma)$ has only even permutations, then show that partition of n corresponding to σ are odd and distinct.
(c) Let \mathbf{F} be a finite field with q elements. Let $a=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right] \in \mathrm{GL}_{2}(F)$. Find $N(a)$ and its order.

