M.Sc. (MATHEMATICS WITH APPLICATIONS
 IN COMPUTER SCIENCE)

M.Sc. (MACS)

Term-End Examination
00038
June, 2015

MMT-002 : LINEAR ALGEBRA

Time : $1 \frac{1}{2}$ hours
Maximum Marks : 25
(Weightage : 70\%)

Note: Question no. 5 is compulsory. Answer any three questions from questions no. 1 to 4. Use of calculator is not allowed.

1. (a) Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ be given by
$T\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}x+y-z \\ x-y+z\end{array}\right]$. Find the matrix of T
with respect to the bases
$\left\{\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$ and $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$.
Is T invertible? Justify your answer.
(b) The following matrix equation describes the migration pattern from City A to City B :

$$
\left[\begin{array}{l}
x_{n+1} \\
y_{n+1}
\end{array}\right]=\left[\begin{array}{ll}
0.95 & 0.15 \\
0.05 & 0.85
\end{array}\right]\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right] .
$$

Here x_{n}, y_{n} denote the populations in City A and City B, respectively, after n years. What will the long term effect of the migration be on the population of the cities ?
2. (a) Write the Jordan canonical form for the matrix

$$
\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 3 & 1 \\
0 & 0 & 3
\end{array}\right] .
$$

(b) Find a least square solution for the system :

$$
\begin{aligned}
& y+z=1,-x+y+2 z=0,2 y+2 z=1, \\
& x+y=0 .
\end{aligned}
$$

3. (a) Solve the system of differential equations

$$
\begin{aligned}
& \frac{d y(t)}{d t}=\operatorname{Ay}(\mathrm{t}) \quad \text { with } \quad \mathrm{y}(\mathrm{t})=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \quad \text { and } \\
& A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

(b) Find the square root of the matrix $\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right] . \quad 2$
4. Write the singular value decomposition for the matrix $\left[\begin{array}{rrr}1 & -2 & 2 \\ -1 & 2 & -2\end{array}\right]$.
5. Which of the following statements are true and which are false? Give reasons for your answers.

$$
5 \times 2=10
$$

(a) The sum of two diagonalizable matrices is also a diagonalizable matrix.
(b) There is a matrix with characteristic polynomial $\left(x^{2}-1\right)^{2}$ and the minimal polynomial $(x+1)^{2}$.
(c) There is no unitary matrix with a column
$\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
(d) The geometric multiplicity of eigenvalue 1

$$
\text { for }\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right] \text { is } 2 \text {. }
$$

(e) If A is $\mathrm{m} \times \mathrm{n}$ matrix, then $\mathrm{A}^{*} \mathrm{~A}$ is positive semi-definite.

