# M.Sc. (MATHEMATICS WITH APPLICATIONS IN COMPUTER SCIENCE) 

## M.Sc. (MACS)

Term-End Practical Examination
June, 2015

## MMT-007(P) : DIFFERENTIAL EQUATIONS AND NUMERICAL SOLUTIONS

Time : $1 \frac{1}{2}$ hours

Note: (i) There are two questions in this paper totalling 30 marks.
(ii) Answer both the questions.
(iii) Remaining 10 marks are for the viva-voce.

1. Write a program in ' $C$ ' language to solve the boundary value problem

$$
\begin{aligned}
& \mathrm{y}^{\prime \prime}-3 \mathrm{y}^{\prime}+2 \mathrm{y}=0, \quad 0<\mathrm{x}<1 \\
& 2 \mathrm{y}(0)-\mathrm{y}^{\prime}(0)=1, \quad \mathrm{y}(1)+\mathrm{y}^{\prime}(1)=2 \mathrm{e}+3 \mathrm{e}^{2}
\end{aligned}
$$

using the shooting method. Use the Taylor series method of order 2 with $h=0.25$ to solve the resulting initial value problem.
2. Write a program in ' $C$ ' language to find the solution of $\nabla^{2} u=x^{2}+y^{2}$ in $R$, subject to the given $R$ and boundary conditions using the five-point difference formula
$R$ : Square $0 \leq x \leq 1,0 \leq y \leq 1$

$$
\begin{aligned}
& u(x, y)=\frac{x^{4}+y^{4}}{12} \text { on } x=1, y=0, y=1 \\
& 12 u+\frac{\partial u}{\partial x}=x^{4}+y^{4}+\frac{1}{3} x^{3} \text { on } x=0
\end{aligned}
$$

Use central difference approximation in the boundary conditions and take the step length $h=\frac{1}{2}$.

