PHE-05

BACHELOR OF SCIENCE (B.Sc.)

Term-End Examination
June, 2015

PHYSICS

PHE-05 : MATHEMATICAL METHODS IN PHYSICS-II

Time: $1 \frac{1}{2}$ hours

Maximum Marks : 25

Note : Attempt all questions. The marks for each question are indicated against it. Symbols have their usual meanings.

1. Attempt any three parts :
(a) Show that the equation

$$
3 x(x y-2) d x+\left(x^{3}+2 y\right) d y=0
$$

is exact and determine its solution.
(b) Solve the following equation:

$$
\frac{d y}{d x}=\frac{x^{3}+y^{3}}{x y^{2}}
$$

(c) Show that the function $f(x, t)=x^{2}+9 t^{2}$
satisfies the wave equation $\frac{\partial^{2} f}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} f}{\partial t^{2}}$.
Hence, obtain the value of c.
(d) Find the particular integral of the following equation :

$$
\frac{d^{2} y}{d x^{2}}-y=x+\frac{x^{2}}{2}
$$

(e) Use the method of separation of variables to reduce the Laplace's equation $\nabla^{2} f=0$ into three ODEs.
2. Write down the differential equation for a particle falling vertically from rest under a constant force of gravity ($\overrightarrow{\mathrm{F}}=\overrightarrow{\mathrm{mg}}$) and a resistive force proportional to its velocity. Solve its equation of motion to obtain its velocity and position as a function of time.

OR

For the ODE, $\frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 x y=0$, obtain the coefficients of the power series solution.
3. Plot the periodic function $f(x)=x\{-\pi \leq x \leq \pi$ where $f(x+2 \pi)=f(x)$. Expand it in a Fourier series.

OR

Heat flow from an insulated bar of length L with both its ends at $0^{\circ} \mathrm{C}$ satisfies the following diffusion equation :

$$
\frac{\partial T(x, t)}{\partial t}=k \frac{\partial^{2} T}{\partial x^{2}}(x, t),(0<x<L, t>0)
$$

Write down the boundary conditions for the problem and obtain the general solution.

विज्ञान स्नातक (बी.एस सी.)

सत्रांत परीक्षा
जून, 2015
भौतिक विज्ञान
पी.एच.ई.-05 : भौतिकी में गणितीय विधियाँ-II
समय : $1 \frac{1}{2}$ घण्टे
अधिकतम अंक : 25
नोट: सभी प्रश्न कीजिए / प्रत्येक प्रश्न के अंक उसके सामने दिए गए हैं। प्रतीकों के अपने सामान्य अर्थ हैं।

1. किन्हीं तीन भागों के उत्तर दीजिए :
(क) दिखाइए कि निम्नलिखित समीकरण यथातथ है और इसे हल कीजिए :

$$
3 x(x y-2) d x+\left(x^{3}+2 y\right) d y=0
$$

(ख) निम्नलिखित समीकरण को हल कीजिए :

$$
\frac{d y}{d x}=\frac{x^{3}+y^{3}}{x y^{2}}
$$

(ग) सिद्ध कीजिए कि फलन $\mathrm{f}(\mathrm{x}, \mathrm{t})=\mathrm{x}^{2}+9 \mathrm{t}^{2}$ तरंग समीकरण $\frac{\partial^{2} \mathrm{f}}{\partial \mathrm{x}^{2}}=\frac{1}{\mathrm{c}^{2}} \frac{\partial^{2} \mathrm{f}}{\partial \mathrm{t}^{2}}$ को सन्तुष्ट करता है ।
अतः, c का मान भी प्राप्त कीजिए।
(घ) निम्नलिखित समीकरण का विशेष समाकल ज्ञात कीजिए :

$$
\frac{d^{2} y}{\mathrm{dx}^{2}}-\mathrm{y}=\mathrm{x}+\frac{\mathrm{x}^{2}}{2}
$$

(ङ) चर पृथक्करण विधि के प्रयोग से लाप्लास समीकरण $\nabla^{2} \mathrm{f}=0$ को तीन साधारण अवकल समीकरणों में विभक्त कीजिए।
2. एक अचर गुरुत्वाकर्षण बल $(\overrightarrow{\mathrm{F}}=\mathbf{\mathrm { mg }})$ और इसके वेग के समानुपाती एक प्रतिरोधक बल के अधीन, एक कण विरामावस्था से ऊर्ध्वाधरत: नीचे की ओर गिरता है । कण की गति के संगत अवकल समीकरण लिखिए और इसके समीकरण को हल करके कण की स्थिति और उसका वेग समय के फलन के रूप में प्राप्त कीजिए।

अथवा

निम्नलिखित साधारण अवकल समीकरण के घात श्रेणी हल के गुणांक प्राप्त कीजिए :

$$
\frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 x y=0
$$

3. निम्नलिखित आवर्ती फलन को आलेखित कीजिए :

$$
\mathrm{f}(\mathrm{x})=\mathrm{x}\{-\pi \leq \mathrm{x} \leq \pi \text { जहाँ } \mathrm{f}(\mathrm{x}+2 \pi)=\mathrm{f}(\mathrm{x}) \text { है । इस }
$$

फलन का फूरिए श्रेणी में प्रसार प्राप्त कीजिए। $1+6=7$

अथवा

लम्बाई L वाला एक समांग छड़ ऊष्मारोधी पदार्थ से घिरा है। उसके दोनों सिरे $0^{\circ} \mathrm{C}$ तापमान पर हैं। छड़ में प्रवाहित ऊष्मा निम्नलिखित विसरण समीकरण को सन्तुष्ट करती है :

$$
\frac{\partial T(x, t)}{\partial t}=k \frac{\partial^{2} T}{\partial x^{2}}(x, t),(0<x<L, t>0)
$$

इस समस्या के लिए परिसीमा प्रतिबन्ध लिखिए और व्यापक
हल प्राप्त कीजिए।

