BACHELOR'S DEGREE PROGRAMME (BDP)

ロ530B Term-End Examination
June, 2015

ELECTIVE COURSE : MATHEMATICS MTE-06 : ABSTRACT ALGEBRA

Time: 2 hours
Maximum Marks : 50
(Weightage : 70\%)
Note: Attempt five questions in all. Question no. 7 is compulsory. Answer any four questions from the rest. Use of calculator is not allowed.

1. (a) Let
$M_{2}(\mathbf{Q})=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \right\rvert\, a, b, c, d \in \mathbf{Q}\right\}$
be the ring of 2×2 matrices over \mathbf{Q} with usual matrix addition and multiplication and let
$R=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in \mathbf{M}_{2}(\mathbf{Q}) \right\rvert\, a=d, c=0\right\}$.
(i) Check that R is a subring of $M_{2}(Q)$. Is R commutative ? Justify your answer.
(ii) Let $\mathrm{I}=\left\{\left.\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right] \in \mathrm{R} \right\rvert\, \mathrm{a}=\mathrm{d}=0\right\}$.

Is I an ideal of R ? Justify your answer. 4
(b) If \mathbf{Q}^{*} is the set of non-zero rational numbers and * is an operation defined on \mathbf{Q}^{*} by $a * b=\frac{a b}{3}$ for all $a, b \in Q^{*}$, then show that $\left(\mathbf{Q}^{*}, *\right)$ is a group.
(c) List all the proper non-trivial subgroups of Z_{12}.
2. (a) Prove that
$\frac{\mathbf{Q}[\mathrm{x}]}{\left\langle\mathrm{x}^{2}+\mathrm{x}+1\right\rangle}$ is a field extension of \mathbf{Q}.
(b) Does the ring $\frac{Z_{2}[x]}{\left\langle\mathrm{x}^{8}+1\right\rangle}$ have nilpotent elements? Justify your answer. 2
(c) Show that, a group of order 15 has a unique Sylow 3-subgroup and a unique Sylow 5-subgroup. Deduce that any group of order 15 is cyclic.
3. (a) Find the greatest common divisor of $2 x^{2}+7 x+3$ and $x^{2}+8 x+15$ in $Q[x]$.
(b) Let \mathbf{R}^{*} be the group of non-zero real numbers under multiplication. Define $\theta: \mathrm{GL}_{3}(\mathbf{R}) \rightarrow \mathbf{R}^{*}$ by $\theta(\mathrm{A})=\operatorname{det}(\mathrm{A})$ for all $A \in \mathrm{GL}_{3}(\mathbf{R})$.

Show that θ is a homomorphism and deduce that $\frac{\mathrm{GL}_{3}(\mathbf{R})}{\mathrm{SL}_{3}(\mathbf{R})} \simeq \mathbf{R}^{*}$.
(c) Let

$$
R=\left\{\left.\frac{m}{n} \right\rvert\, m, n \in Z, n=2^{a} 3^{b}, a \cdot b \in Z, a, b \geq 0\right\}
$$

Check whether R is a ring under the usual addition and multiplication of rational numbers. Is it commutative ? Does it have an identity element? Justify your answers.
4. (a) Is $\mathrm{A}=\{(1,1)$; $(1,2),(2,1)\}$ a transitive, reflexive and symmetric relation ? Justify your answer.
(b) Let G be the group of non-zero complex numbers under multiplication. Let N be the set of complex numbers of absolute value 1 . Show that N is a normal subgroup of G and G / N is isomorphic to the group of all positive real numbers under multiplication.
(c) Show that, if G is a finite group containing an even number of elements, then there exists an element a in G such that $a \neq e$ and $a^{2}=e$, where e is the identity element of G.
5. (a) Write out the multiplication table for the following set of matrices over \mathbf{Q} :

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

Check whether the set forms a group under matrix multiplication.
(b) Show that an ideal I in $\mathbf{C}[x]$ is a prime ideal if and only if $I=\langle 0\rangle$ or $I=\langle x-a\rangle$ for some $a \in \mathbf{C}$.
6. (a) Show that $\phi: \mathbf{C} \rightarrow M_{2}(\mathbf{R})$ defined by

$$
\phi(a+i b)=\left[\begin{array}{cc}
a & b \\
-b & a
\end{array}\right], a, b \in \mathbf{R}
$$

is a homomorphism of rings. Also find the kernel of ϕ.
(b) Find the quotient field of the integral domain $\{\alpha+i \beta \mid \alpha, \beta \in \mathbf{Z}\}$.
(c) What is the characteristic of a field F containing 25 elements? Also give the prime subfield of F.
(d) Give all the units of \mathbf{Z}_{15}.
7. Which of the following statements are true and which are false? Justify your answer.
(i) There is a field containing 10 elements.
(ii) The set of all odd integers is a group under addition.
(iii) If $\mathrm{K}, \mathrm{H}, \mathrm{G}$ are groups such that K is a normal subgroup of H and H is a normal subgroup of G, then K is a normal subgroup of G.
(iv) The map f: $\mathbf{R} \rightarrow \mathbf{R}$ defined by $\mathrm{f}(\mathrm{a})=2 \mathrm{a}$ for all $\mathbf{a} \in \mathbf{R}$ is a ring homomorphism of rings.
(v) $\mathbf{Z}_{2} \times \mathbf{Z}_{3}$ is a cyclic group.

स्नातक उपाधि कार्यक्रम

(बी.डी.पी.)
सत्रांत परीक्षा

जून, 2015

ऐच्छिक पाठ्यक्रम : गणित
 एम.टी.ई.-06 : अमूर्त बीजगणित

समय : 2 घण्टे
अधिकतम अंक : 50
(कुल का : 70\%)
नोट: कुल पाँच प्रश्न कीजिए। प्रश्न सं. 7 करना अनिवार्य है । शेष प्रश्नों में से किन्हीं चार प्रश्नों के उत्तर दीजिए। कैल्कुलेटरों के प्रयोग करने की अनुमति नहीं है।

1. (क) मान लीजिए

$$
\mathbf{M}_{\mathbf{2}}(\mathbf{Q})=\left\{\left.\left[\begin{array}{ll}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & \mathrm{~d}
\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \in \mathbf{Q}\right\}
$$

Q पर सामान्य आव्यूह योग और गुणन वाले 2×2 आव्यूहों का वलय है और मान लीजिए

$$
R=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2}(\mathbf{Q}) \right\rvert\, a=d, c=0\right\} .
$$

(i) जाँच कीजिए कि $\mathrm{R}, \mathrm{M}_{2}(\boldsymbol{Q})$ का एक उपवलय है । क्या R क्रमविनिंमेय है ? अपने उत्तर की पुष्टि कीजिए।
(ii) मान लीजिए
$I=\left\{\left.\left[\begin{array}{ll}\mathrm{a} & \mathrm{b} \\ \mathrm{c} & \mathrm{d}\end{array}\right] \in \mathrm{R} \right\rvert\, \mathrm{a}=\mathrm{d}=0\right\}$.
क्या I, R की एक गुणजावली है ? अपने उत्तर की पुष्टि कीजिए।
(ख) यदि \mathbf{Q}^{*} शून्येतर परिमेय संख्याओं का समुच्चय है और $*$, सभी $\mathrm{a}, \mathrm{b} \in \mathbf{Q}^{*}$ के लिए $\mathrm{a} * \mathrm{~b}=\frac{\mathrm{ab}}{3}$ द्वारा \mathbf{Q}^{*} पर परिभाषित संक्रिया है, तब दिखाइए कि $\left(\mathbf{Q}^{*}, *\right)$ एक समूह है।
(ग) Z_{12} के सभी उचित अतुच्छ उपसमूहों को सूचीबद्ध कीजिए।
2. (क) सिद्ध कीजिए कि $\frac{\mathbf{Q}[\mathrm{x}]}{\left\langle\mathrm{x}^{2}+\mathrm{x}+1\right\rangle}, \mathbf{Q}$ का क्षेत्र-विस्तार है।
(ख) क्या वलय $\frac{\mathrm{Z}_{2}[\mathrm{x}]}{\left\langle\mathrm{x}^{8}+1\right\rangle}$ के शून्यंभावी अवयव हैं ? अपने उत्तर की पुष्टि कीजिए।
(ग) दिखाइए कि कोटि 15 के समूह का अद्वितीय सीलो 3 -उपसमूह और अद्वितीय सीलो 5 -उपसमूह होता है । इस तरह निगमन कीजिए कि कोटि 15 का कोई भी समूह चक्रीय है ।
3. (क) $\mathbf{Q}[\mathrm{x}]$ में $2 \mathrm{x}^{2}+7 \mathrm{x}+3$ और $\mathrm{x}^{2}+8 \mathrm{x}+15$ का महत्तम सार्व भाजक ज्ञात कीजिए।
(ख) मान लीजिए \mathbf{R}^{*} गुणन के अधीन शून्येतर वास्तविक संख्याओं का समूह है । सभी $\mathrm{A} \in \mathrm{GL}_{3}(\mathbf{R})$ के लिए
$\theta(A)=\operatorname{det}(A) \quad$ द्वारा $\quad \theta: \mathrm{GL}_{3}(\mathbf{R}) \rightarrow \mathbf{R}^{*} \quad$ को परिभाषित कीजिए।

दिखाइए कि θ एक समाकारिता है और इस तरह निगमन कीजिए कि $\frac{\mathrm{GL}_{3}(\mathbf{R})}{\mathrm{SL}_{3}(\mathbf{R})} \simeq \mathbf{R}^{*}$.
(ग) मान लीजिए
$R=\left\{\left.\frac{m}{n} \right\rvert\, m, n \in Z, n=2^{a} 3^{b}, a, b \in Z, a, b \geq 0\right\}$.
जाँच कीजिए कि परिमेय संख्याओं के सामान्य योग और गुणन के अधीन R एक वलय है या नहीं । क्या यह क्रमविनिमेय है ? क्या इसका कोई तत्समक अवयव है ? अपने उत्तरों की पुष्टि कीजिए।
4. (क) क्या $\mathrm{A}=\{(1,1),(1,2),(2,1)\}$ संक्रामक, स्वतुल्य और सममित संबंध है ? अपने उत्तर की पुष्टि कीजिए।
(ख) मान लीजिए G, गुणन के अधीन शून्येतर सम्मिश्र संख्याओं का समूह है । मान लीजिए N निरपेक्ष मान 1 की सम्मिश्र संख्याओं का समुच्चय है । दिखाइए कि N , G का एक प्रसामान्य उपसमूह है और G / N गुणन के अधीन सभी धनात्मक वास्तविक संख्याओं के समूह के लिए तुल्याकारी है ।
(ग) दिखाइए कि यदि G सम संख्या के अवयवों वाला एक परिमित समूह है, तब G में एक ऐसे अवयव a का अस्तित्व होता है जिसके लिए $a \neq e$ और $a^{2}=e$, जहाँ e, G का तत्समक अवयव है ।
5. (क) \mathbf{Q} पर निम्नलिखित आव्यूह समुच्चय के लिए गुणन तालिका बनाइए :

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

जाँच कीजिए कि क्या यह समुच्चय आव्यूह गुणन के अधीन समूह बनाता है ।
(ख) दिखाइए कि $\mathbf{C}(\mathbf{x})$ में एक गुणजावली I एक अभाज्य गुणजावली है, यदि और केवल यदि $\mathrm{I}=\langle 0\rangle$ या $I=\langle x-a\rangle$, जहाँ $a \in C$.
6. (क) दिखाइए कि
$\phi(a+i b)=\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right], a, b \in R$ द्वारा परिभाषित
$\phi: \mathbf{C} \rightarrow \mathbf{M}_{2}(\mathbf{R})$ वलयों की समाकारिता है । ϕ की अष्टि भी ज्ञात कीजिए।

3
(ख) पूर्णांकीय प्रांत $\{\alpha+i \beta \mid \alpha, \beta \in Z\}$ का विभाग क्षेत्र
ज्ञात कीजिए ।
(ग) 25 अवयवों वाले क्षेत्र F का अभिलक्षणिक क्या है ? F का अभाज्य उपक्षेत्र भी बताइए।
(घ) Z_{15} के सभी मात्रक दीजिए ।
7. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से कथन असत्य ? अपने उत्तर की पुष्टि कीजिए ।
(i) 10 अवयवों वाला एक क्षेत्र होता है ।
(ii) सभी विषम पूर्णांकों का समुच्चय योग के अधीन एक समूह है।
(iii) यदि $\mathrm{K}, \mathrm{H}, \mathrm{G}$ ऐसे समूह हैं जिनके लिए K, H का प्रसामान्य उपसमूह है और H, G का प्रसामान्य उपसमूह है, तब K, G का प्रसामान्य उपसमूह है ।
(iv) \mathbf{R} में सभी a के लिए $f(a)=2 a$ द्वारा परिभाषित प्रतिचित्र $\mathrm{f}: \mathbf{R} \rightarrow \mathbf{R}$ वलयों की वलय समाकारिता है ।
(v) $\mathbf{Z}_{2} \times \mathbf{Z}_{3}$ एक चक्रीय समूह है।

