BACHELOR'S DEGREE PROGRAMME (BDP)

Term-End Examination

June, 2015

ELECTIVE COURSE : MATHEMATICS MTE-02 : LINEAR ALGEBRA

Time: 2 hours
Maximum Marks : 50
(Weightage 70\%)
Note: Attempt any four questions from Questions no. 1 to 6. Question no. 7 is compulsory. Use of calculators is not allowed.

1. (a) Let $B=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ be an ordered basis of \mathbf{R}^{3} with $\alpha_{1}=(1,0,-1), \alpha_{2}=(1,1,1)$, $\alpha_{3}=(1,0,0)$. Write the vector $v=(a, b, c)$ as a linear combination of the basis vectors from B.
(b) Suppose $\alpha_{1}=(1,0,1), \alpha_{2}=(0,1,-2)$ and $\alpha_{3}=(-1,-1,0)$ are vectors in \mathbf{R}^{3} and $\mathbf{f}: \mathbf{R}^{3} \rightarrow \mathbf{R}$ is a linear functional such that $\mathrm{f}\left(\alpha_{1}\right)=1, \mathrm{f}\left(\alpha_{2}\right)=-1$ and $\mathrm{f}\left(\alpha_{3}\right)=3$. If $\alpha=(\mathrm{a}, \mathrm{b}, \mathrm{c}) \in \mathbf{R}^{3}$, find $\mathrm{f}(\alpha)$.
(c) Show that the vectors ($3,0,-3$), $(-1,1,2)$, $(2,1,1)$ and ($4,2,-2$) are linearly dependent in \mathbf{R}^{3}.
2. (a) Let $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$ be the linear operator defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}, x_{3},-2 x_{2}-x_{3}\right)$. Let $f(x)=-x^{3}+2$. Find the operator $f(T)$.
(b) Find the radius and the centre of the circular section of the sphere $|\mathbf{r}|=4$ cut off by the plane $\mathbf{r} .(2 \mathbf{i}-\mathbf{j}+4 \mathbf{k})=3$.
(c) Check whether the following matrix is orthogonal :
$\left[\begin{array}{ccc}1 / \sqrt{3} & 1 / \sqrt{2} & 1 / \sqrt{6} \\ 1 / \sqrt{3} & -1 / \sqrt{2} & 1 / \sqrt{6} \\ 1 / \sqrt{3} & 0 & -2 / \sqrt{6}\end{array}\right]$
3. (a) Let $\mathrm{A}=\left[\begin{array}{ccc}3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0\end{array}\right]$.

Find
(i) the characteristic polynomial of A .
(ii) the minimal polynomial of A .
(iii) the eigenvalues of A .
(iv) the eigenvectors of A.
(b) Solve by Gaussian elimination method the following system of equations:

$$
\begin{aligned}
& x+y+z+t=5 \\
& x-y+z+t=1 \\
& x+z+t=3
\end{aligned}
$$

4. (a) State the Cayley - Hamilton theorem. Verify the theorem for the matrix

$$
A=\left[\begin{array}{ccc}
3 & 1 & -1 \tag{3}\\
2 & 2 & -1 \\
2 & 2 & 0
\end{array}\right]
$$

(b) Check whether the basis $B=\{(-1,1,0),(1,1,0),(1,0,-1)\}$ is an orthogonal basis. Apply Gram - Schmidt orthogonalization process to B and obtain an orthonormal basis for \mathbf{R}^{3} with respect to the standard inner product on \mathbf{R}^{3}.
(c) Let V be the subspace of \mathbf{R}^{3} spanned by $\{(1,1,0),(1,1,1)\}$ and $T: V \rightarrow V$ be defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(0, x_{1}, x_{2}\right)$. Find the kernel of T.
5. (a) If V is a finite dimensional vector space and $\mathrm{v} \neq 0$ is a vector in V, show that there is a linear functional $f \in V^{*}$ such that $f(v) \neq 0$.
(b) Find the orthogonal canonical reduction of the quadratic form

$$
2 x^{2}+5 y^{2}+6 x y-2 y z+2 z^{2}
$$

Also, determine its principal axes and signature.
6. (a) Find the adjoint of the matrix $\left[\begin{array}{ccc}1 & 3 & 4 \\ -3 & -2 & -7 \\ -4 & 2 & 5\end{array}\right]$. Hence find its inverse. 5
(b) Let V be the vector space of 2×2 matrices over \mathbf{R} and W_{1}, W_{2} be subspaces of V defined by $W_{1}=\left\{\left.\left[\begin{array}{ll}a & -a \\ b & a\end{array}\right] \right\rvert\, a, b \in \mathbf{R}\right\}$, $W_{2}=\left\{\left.\left[\begin{array}{ll}a & b \\ c & -a\end{array}\right] \right\rvert\, a, b, c \in \mathbf{R}\right\}$. Find the dimensions of W_{1}, W_{2} and $W_{1} \cap W_{2}$.
7. Which of the following statements are true and which are false? Give reasons for your answer. $5 \times 2=10$
(i) If V is a vector space, $\mathrm{W}_{1}, \mathrm{~W}_{2}$ are subspaces of V , then $\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ is a vector space.
(ii) For any real value of θ, the matrix $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ is invertible.
(iii) There is no 3×3 matrix for which the minimal polynomial is x^{2}.
(iv) If $\langle\alpha, \beta\rangle=0$ for all $\beta \in \mathrm{V}, \mathrm{V}$ an inner product space, then $\alpha=0$.
(v) The nullity of the linear transformation $\mathrm{T}: \mathbf{R}^{3} \rightarrow \mathbf{R}$, defined by $\mathrm{T}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}+2 \mathrm{y}+\mathrm{z}$, is 2 .

स्नातक उपाधि कार्यक्रम
(बी.डी.पी.)
सत्रांत परीक्षा
जून, 2015
ऐच्छिक पाठ्यक्रम : गणित एम.टी.ई.-02 : रैखिक बीजगणित

समय : 2 घण्टे
(कुल का 70\%)
नोट : प्रश्न सं. 1 से 6 में से किन्हीं चार प्रश्नों के उत्तर दीजिए । प्रश्न सं. 7 करना ज़रूरी है / कैलकुलेटरों के प्रयोग करने की अनुमति नहीं है ।

1. (क) मान लीजिए $\mathbf{B}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}, \mathbf{R}^{3}$ का क्रमित आधार है जहाँ $\alpha_{1}=(1,0,-1), \alpha_{2}=(1,1,1)$, $\alpha_{3}=(1,0,0)$ । सदिश $v=(a, b, c)$ को B के आधार सदिशों के एकघात संचय के रूप में लिखिए ।
(ख) मान लीजिए $\alpha_{1}=(1,0,1), \alpha_{2}=(0,1,-2)$ और $\alpha_{3}=(-1,-1,0), \mathbf{R}^{3}$ में सदिश हैं और $\mathrm{f}: \mathbf{R}^{3} \rightarrow \mathbf{R}$ एक ऐसा रैखिक फलनक है जिसके लिए $\mathrm{f}\left(\alpha_{1}\right)=1$, $\mathrm{f}\left(\alpha_{2}\right)=-1$ और $\mathrm{f}\left(\alpha_{3}\right)=3$. यदि $\alpha=(\mathrm{a}, \mathrm{b}, \mathrm{c}) \in \mathrm{R}^{3}$, तो $f(\alpha)$ ज्ञात कीजिए ।
(ग) दिखाइए कि सदिश $(3,0,-3),(-1,1,2),(2,1,1)$ और $(4,2,-2), \mathrm{R}^{3}$ में रैखिकत: आश्रित हैं ।
2. (क) मान लीजिए
$\mathrm{T}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}, \mathrm{~T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\left(\mathrm{x}_{1}, \mathrm{x}_{3},-2 \mathrm{x}_{2}-\mathrm{x}_{3}\right)$
द्वारा परिभाषित रैखिक संकारक है । मान लीजिए $f(x)=-x^{3}+2$. संकारक $f(T)$ ज्ञात कीजिए ।
(ख) गोले $|\mathbf{r}|=4$ के समतल $\mathbf{r} .(2 \mathbf{i}-\mathbf{j}+4 \mathbf{k})=3$ द्वारा किए गए वृत्तीय परिच्छेद की त्रिज्या और केंद्र ज्ञात कीजिए।
(ग) जाँच कीजिए कि निम्नलिखित आव्यूह लांबिक है या नहीं :

$$
\left[\begin{array}{ccc}
1 / \sqrt{3} & 1 / \sqrt{2} & 1 / \sqrt{6} \\
1 / \sqrt{3} & -1 / \sqrt{2} & 1 / \sqrt{6} \\
1 / \sqrt{3} & 0 & -2 / \sqrt{6}
\end{array}\right]
$$

3. (क) मान लीजिए

$$
A=\left[\begin{array}{ccc}
3 & 1 & -1 \\
2 & 2 & -1 \\
2 & 2 & 0
\end{array}\right]
$$

ज्ञात कीजिए
(i) A का अभिलक्षणिक बहुपद।
(ii) A का अल्पिष्ठ बहुपद ।
(iii) A के आइगेनमान ।
(iv) A के आइगेनसदिश ।
(ख) निम्नलिखित समीकरण निकाय को गाउसीय निराकरण विधि से हल कीजिए :

$$
\begin{aligned}
& x+y+z+t=5 \\
& x-y+z+t=1 \\
& x+z+t=3
\end{aligned}
$$

4. (क) कैले - हैमिल्टन प्रमेय का कथन दीजिए।

आव्यूह $\mathrm{A}=\left[\begin{array}{ccc}3 & 1 & -1 \\ 2 & 2 & -1 \\ 2 & 2 & 0\end{array}\right]$ के लिए इस प्रमेय को सत्यापित कीजिए।
(ख) जाँच कीजिए कि आधार
$B=\{(-1,1,0),,(1,1,0),(1,0,-1)\}$ एक लांबिक आधार है या नहीं । \mathbf{R}^{3} पर मानक आंतर गुणनफल के सापेक्ष \mathbf{R}^{3} के लिए लांबिक प्रसामान्य आधार प्राप्त करने के लिए \mathbf{B} पर ग्राम - श्मिट लांबिकीकरण प्रक्रिया लागू कीजिए।
(ग) मान लीजिए $\mathrm{V},\{(1,1,0),(1,1,1)\}$ द्वारा विस्तारित R^{3} की उपसमष्टि है और $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$, $\mathrm{T}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}\right)=\left(0, \mathrm{x}_{1}, \mathrm{x}_{2}\right)$ द्वारा परिभाषित है । T की अष्टि ज्ञात कीजिए।
5. (क) यदि V एक परिमित विमीय सदिश समष्टि है और $\mathrm{v} \neq 0, \mathrm{~V}$ में एक सदिश है, तो दिखाइए कि एक ऐसा रैखिक फलनक $\mathrm{f} \in \mathrm{V}^{*}$ होता है जिसके लिए $\mathrm{f}(\mathrm{v}) \neq 0$.
(ख) द्विघाती समघात $2 \mathrm{x}^{2}+5 \mathrm{y}^{2}+6 \mathrm{xy}-2 \mathrm{yz}+2 \mathrm{z}^{2}$ का लांबिक विहित समानयन ज्ञात कीजिए । इसके मुख्य अक्ष और चिह्नक भी निर्धारित कीजिए।
6. (क) आव्यूह $\left[\begin{array}{ccc}1 & 3 & 4 \\ -3 & -2 & -7 \\ -4 & 2 & 5\end{array}\right]$ के सहखंडज ज्ञात

कीजिए। अतः इसका प्रतिलोम ज्ञात कीजिए ।
(ख) मान लीजिए V, \mathbf{R} पर 2×2 आव्यूहों की सदिश समष्टि है और $\mathrm{W}_{1}, \mathrm{~W}_{2}$

$$
\begin{aligned}
& \mathrm{W}_{1}=\left\{\left.\left[\begin{array}{lr}
\mathrm{a} & -\mathrm{a} \\
\mathrm{~b} & \mathrm{a}
\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{~b} \in \mathbf{R}\right\}, \\
& \mathrm{W}_{2}=\left\{\left.\left[\begin{array}{cc}
\mathrm{a} & \mathrm{~b} \\
\mathrm{c} & -\mathrm{a}
\end{array}\right] \right\rvert\, \mathrm{a}, \mathrm{~b}, \mathrm{c} \in \mathbf{R}\right\} \text { द्वारा परिभाषित }
\end{aligned}
$$

V की उपसमष्टियाँ हैं । $\mathrm{W}_{1}, \mathrm{~W}_{2}$ और $\mathrm{W}_{1} \cap \mathrm{~W}_{2}$ की विमाएँ ज्ञात कीजिए।
7. निम्नलिखित में से कौन-से कथन सत्य हैं और कौन-से असत्य ? अपने उत्तर के कारण दीजिए । $5 \times 2=10$.
(i) यदि V एक सदिश समष्टि है, $\mathrm{W}_{1}, \mathrm{~W}_{2}, \mathrm{~V}$ की उपसमष्टियाँ हैं, तब $\mathrm{W}_{1} \cup \mathrm{~W}_{2}$ एक सदिश समष्टि है।
(ii) θ के किसी वास्तविक मान के लिए, आव्यूह $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)$ व्युत्क्रमणीय है ।
(iii) कोई भी ऐसा 3×3 आव्यूह नहीं है जिसके लिए अल्पिष्ठ बहुपद x^{2} है ।
(iv) यदि सभी $\beta \in \mathrm{V}$ के लिए $\langle\alpha, \beta\rangle=0, \mathrm{~V}$ एक आंतर गुणन समष्टि है, तब $\alpha=0$.
(v) $\mathrm{T}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}+2 \mathrm{y}+\mathrm{z}$ द्वारा परिभाषित रैखिक रूपांतरण $\mathrm{T}: \mathbf{R}^{3} \rightarrow \mathbf{R}$ की शून्यता 2 है ।

