No. of Printed Pages: 4

BIMEE-004

B.Tech. – VIEP – MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination

June, 2015

BIMEE-004 : OPTIMIZATION TECHNIQUES IN ENGINEERING

Time : 3 hours

00026

Maximum Marks: 70

- Note: Answer any five of the following questions. All questions carry equal marks. Assume a suitable value for any missing/incorrect data. Use of scientific calculator is permitted.
- (a) Find the dimensions of a box of largest volume that can be inscribed in a sphere of unit radius.
 - (b) Determine the maximum value of a two variable function as given below :

$$\mathbf{f}(\mathbf{x}) = 2\mathbf{x}_1 \, \mathbf{x}_2 + 2\mathbf{x}_2 - \mathbf{x}_1^2 - 2\mathbf{x}_2^2$$

BIMEE-004

P.T.O.

7

7

- 2. A production manager is faced with the problem of job allocation of his two production teams. The production rate of Team I is 8 units per hour, while the production rate of Team II is 5 units per hour. The normal working hours of each team is 40 hours per week. The production manager has prioritized the following goals for the coming week.
 - P_1 = Avoid under-achievement of the desired production level of 550 units.
 - P_2 = Overtime operation of Team I is limited to 5 hours.
 - P_3 = The total overtime for both the teams should be minimized.
 - P_4 = Any under-utilization of regular working hours of the teams should be avoided; assign differential weights according to the relative productivity of the two teams.

Develop the above goal programming problem and solve it.

14

BIMEE-004

2

- **3.** (a) Discuss the two phase method for solving an LPP.
 - (b) Explain the methodology of Gauss-Newton method for solving an optimization problem.
- 4. Solve the following assignment problem to maximize the profit. The following table gives the profits of assignment in INR. Also give the optimal profit :

	J ₁	J_2	J ₃	J ₄	J_{5}
M ₁	50	60	40	30	35
M ₂	35	55	45	55	40
M ₃	40	45	50	35	35
M ₄	60	40	55	40	30
M ₅	45	35	45	55	50

- 5. (a) State the necessary and sufficient condition for the maximum of a multi-variable function.
 - (b) Solve the following LPP by the cutting plane method :

Max $z = 200 y_1 + 400 y_2 + 440 y_3$

subject to $15 y_1 + 30 y_2 + 20 y_3 \le 600$

 $15 y_1 + 10 y_2 + 50 y_3 \le 400$

BIMEE-004

3

P.T.O.

7

7

7

7

14

- Define Dual of an LPP. Also illustrate with 6. (a) 7 the help of a suitable example. 7
 - Discuss the Quasi-Newton methods. (b)
- Write short notes of the 7. two on any 2×7=14 following:
 - **Dichotomous Search Method** (a)
 - Regula Falsi Method (b)
 - Genetic Algorithm (c)
 - Simulated Annealing (d)