No. of Printed Pages: 5

BME-052

DIPLOMA IN MECHANICAL ENGINEERING (DME) / ADVANCED LEVEL CERTIFICATE COURSE IN MECHANICAL ENGINEERING (DMEVI / ACMEVI)

00890

Term-End Examination
June, 2015

BME-052: BASICS OF THERMAL ENGINEERING

Time: 2 hours

Maximum Marks: 70

Note: Question No. 1 is compulsory. Attempt five questions in all. All questions carry equal marks. Use of scientific calculator and steam tables is allowed.

- 1. Choose the correct alternative for the following objective type questions. $7\times2=14$
 - (a) Torr is a unit of
 - (i) temperature
 - (ii) pressure
 - (iii) volume
 - (iv) energy

- (b) Which of the following is **not** an extensive property?
 - (i) Volume
 - (ii) Pressure
 - (iii) Energy
 - (iv) Entropy
- (c) Perpetual motion machine of the second kind violates the
 - (i) First law of thermodynamics
 - (ii) Kelvin-Planck statement
 - (iii) Clausius statement
 - (iv) Third law of thermodynamics
- (d) Heat transferred to a system at constant pressure is equal to
 - (i) work transfer
 - (ii) change in internal energy
 - (iii) change in enthalpy
 - (iv) change in entropy
- (e) The efficiency of a reversible cycle depends upon the
 - (i) nature of the working substance
 - (ii) amount of the working substance
 - (iii) temperature of the two reservoirs between which the cycle operates
 - (iv) type of cycle followed

- (f) The specific heats of an ideal gas C_p and C_v
 - (i) vary with temperature
 - (ii) vary with pressure
 - (iii) vary with both pressure and temperature
 - (iv) are constant
- (g) Two insulated tanks containing ideal gases at different pressures and temperatures are connected to each other and gases are allowed to mix. The process that occurs can be called
 - (i) free expansion
 - (ii) constant enthalpy
 - (iii) constant internal energy
 - (iv) reversible adiabatic
- 2. Answer any *two* of the following questions: $2 \times 7 = 14$
 - (a) What is the Zeroth law of thermodynamics?
 What is the difference between the universal
 gas constant and a characteristic gas
 constant?
 - (b) A mass of 1.5 kg of air is compressed from 0.1 MPa to 0.7 MPa for which

pv = constant.

The initial density of air is 1.16 kg/m³. Find the work done by the piston to compress the air.

(c) The properties of a certain fluid are related as follows:

$$u = 196 + 0.718 t$$

 $pv = 0.287 (t + 273),$

where u is the specific internal energy (kJ/kg), t is in °C, p is pressure (kN/m²), and v is the specific volume (m³/kg).

For this fluid, find C_v and C_p .

- 3. Answer any *two* of the following questions: $2 \times 7 = 14$
 - (a) Enumerate the Kelvin-Planck statement of the second law of thermodynamics.
 - (b) A vessel of volume 0.04 m³ contains a mixture of saturated water and saturated steam at a temperature of 250°C. The mass of the liquid present is 9 kg. Find the pressure, the mass, the specific volume and the enthalpy.
 - (c) What do you understand by triple point? What is quality of steam?

- **4.** Answer any *two* of the following: $2 \times 7 = 14$
 - (a) What is a heat pump? How does it differ from a refrigerator?
 - (b) What are the four basic components of a steam power plant? Explain with the help of a block diagram.
 - (c) How are the maximum temperature and maximum pressure in the Rankine cycle fixed? When is reheating of steam recommended in a steam power plant?
- 5. Write short notes on any **four** of the following: $4\times 3\frac{1}{2}=14$
 - (a) Solar Energy
 - (b) Photovoltaic Cell
 - (c) Radiation
 - (d) Enthalpy
 - (e) Reaction Turbine
 - (f) Boiler Mountings