No. of Printed Pages: 3

BIEE-035

DIPLOMA IN ELECTRICAL ENGINEERING (DELVI)

Term-End Examination
June, 2015

BIEE-035 : CONTROL SYSTEMS

Time : 2 hours

Maximum Marks: 70

Note: Attempt any **five** questions. All questions carry equal marks. Question no. 1 is **compulsory**.

- 1. Write True/False and justify the following: $7\times2=14$
 - (a) A positive feedback signal improves the performance of automatic control system.
 - (b) In a closed loop system of feedback signal is usually positive.
 - (c) Induction type potentiometers can be used in high impedance servo controlled systems.
 - (d) Mason's gain formula is used to find the overall gain of the system.
 - (e) The polar plot relates the magnitude in decibels with phase angle.
 - (f) Gain margin is a measure of relative stability of a system.
 - (g) The velocity error constant for a type-2 system is infinite.

- 2. (a) What do you mean by continuous and discrete time control system?
- 7

7

4

- (b) Discuss the effect of feedback on the (i) overall gain, (ii) noise and disturbance.
 - in
- **3.** (a) What is the use of Laplace transform in control system engineering?
 - (b) Find the inverse Laplace transform of

$$F(s) = \frac{(s+5)}{s(s+6)(s+7)}.$$
 10

- 4. (a) Define transfer function and give its advantages and disadvantages in analysis of control system.
- 7

7

7

- (b) Discuss unit step and unit parabolic test signal with graphical representation. 7
- 5. (a) The transfer function of a system is given by, $T(s) = \frac{K(s+6)}{s(s+2)(s+5)(s^2+7s+2)}.$ Determine the poles, zeros, characteristic

equation and pole-zero plot.

(b) What is the analogy between translational and rotational motion?

BIEE-035

- 6. (a) Define the static position error constant K_p . Find the steady actuating error e_{ss} to unit step input for type-0 and type-1 system.
 - (b) The open loop transfer function of a servo system with unity feedback is given by,

$$G(s) = \frac{10}{(s+2)(s+5)}$$
.

Determine the damping ratio, un-damped natural frequency of oscillation. What is the % overshoot of the response to a unit step input?

7. A second order servo system is governed by the following equation:

$$\frac{d^2 \theta_o}{dt^2} + 4 \frac{d \theta_o}{dt} + 16 \theta_o = 10 \theta_i$$

where, θ_0 represents output and θ_i is unit step input. Determine the peak overshoots, rise time and settling time (5%).

- 8. (a) List the various methods of determining the stability of control systems. Discuss their relative merits and limitations.
 - (b) Using Nyquist criterion investigate closed loop stability of

$$G(s) H(s) = \frac{1.25 (s + 1)}{(s + 0.5) (s - 2)}.$$

7

7

14

7