Time . 3 hours

Maximum Marks: 70

B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination
June, 2015

BIELE-010: SIGNAL COMPRESSION

Note: Attempt any seven questions. All questions carry equal marks.					
1.	(a)	Explain the predictive coding scheme with the help of the following sequence:	5		
		27 28 29 28 26 27 29 28 30 32 34 36 38			
	(b)	Explain the steps to derive average information with an example.	5		
2.	(a)	Explain the minimum variance of Huffman coding procedure with an example.	5		
	(b)	Describe the procedure for the adaptive Huffman coding algorithm, with the help of			
		a suitable flow chart.	5		

3. Design a 3-bit Tunstall (a) code for a source with the memoryless following alphabet:

$$A = \{A,B,C\}$$

$$P(A) = 0.6$$
, $P(B) = 0.3$, $P(C) = 0.1$.

5

Explain the converse of the Rate distortion **(b)** theorem.

5

4. Describe the LZW algorithm for building adaptive dictionary. Using this approach, encode the following sequence:

wabbafwabbafwabbafwoofwoofwoofwoo where f represents space.

10

5. Encode the following sequence using Prediction with Partial Match (PPM) algorithm:

this # is # the # tithe

Assume the necessary count and cum-count arrays. Given that the word length is to be 6 and # represents space.

10

10

Differentiate between uniform and non-uniform 6. quantization with example.

7.	(a)	Explain discrete convolution with	
		appropriate flow diagram.	5
	(b)	What is Karhunen-Loeve Transform? Explain in brief.	5
8.	Expla	ain the different analysis and synthesis	
	schen	nes for Audio Signals.	10
9.	Descr	ribe the following in brief: 2×5 :	=10
	(a)	Burrows-Wheeler Transform	
	(b)	Tree structured Vector Quantizers	
10.	Write	short notes on the following: 2×5	=10
	(a)	Discrete Cosine Transform	
	(b)	Sub-band Coding Algorithm	