No. of Printed Pages: 2

BIELE-009

B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

June, 2015

00451

BIELE-009: QUANTUM COMMUNICATION

Time: 3 hours

Maximum Marks: 70

Note: Attempt any **seven** questions. All questions carry equal marks. Missing data, if any, may be suitably assumed.

- 1. Explain the following theorems as applicable for open system quantum evolution: 5+5=10
 - (a) Stinespring Theorem
 - (b) Kraus Representation Theorem
- 2. In the context of quantum mechanics, what is the significance of open and closed system dynamics? Give their definitions and signify unitary evolution of density matrix.

10

- 3. What is the procedure for transmission of classical information over quantum channels?

 How are classical bits encoded into z-axis spin projection of an electron?

 5+5=10
- 4. With the help of a suitable example, explain Von Neuman Entropy in the context of Quantum Information Theory.

10

5.	Expla Theor quant	
6.	theore	ly explain the Qubit channel representation em as given by King-Ruskai-Swarez-Werner text to Quantum State Compression.
7.	assist	y signify "SHOR result on entanglement ed channel capacities for transmission of um states over quantum channels." 10
8.	Defin	e the following: $4\times 2\frac{1}{2}=10$
	(a)	Hilbert Space
	(b)	Density Matrix
	(c)	Heisenberg Uncertainty Principle
	(d)	Pure and Mixed States
9.		are SHOR-9 Qubit codes for protection st bit flips and phase flips? Explain in
10.	Write	short notes on any <i>two</i> of the following: $2 \times 5 = 10$
	(a)	Calderbank-Shor-Steane (CSS) Codes
	(b)	Scaling Issues in Hilbert Space
	(c)	Compressing Ensembles of Quantum States