No. of Printed Pages: 3

BIELE-008

B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

00706

Term-End Examination
June, 2015

BIELE-008: OPTO ELECTRONICS COMMUNICATION SYSTEMS

Time : 3 hours				Maximum Marks: 70			
Vo		attempt an qual mark	y seven question s.	is. All quest	tions ca	rry	
L .	Discuss the basic optical laws and define the terms relating to optical fibre communication. Also give the basic structure of an optical fibre cable.						
2.	(a)	Define single-mode and multi-mode optical fibre.					
	(b)	Define 'Acceptar	'Numerical nce angle' of a fib	- .	and	5	
3.	(a)	Define 'Graded-	'Step-Index' Index' fibre.	fibre	and	5	
BIE	ELE-00	08	1		P.T	.o.	

	(b)	Calculate the refractive index of the core and the cladding materials of an optical fibre for which Numerical Aperture $(NA) = 0.35$ and $\Delta = 0.01$.	· <i>5</i>		
4.	(a)	Define radiative losses and 'core and cladding' losses of an optical fibre.	5		
	(b)	Calculate the loss of an optical fibre in dB/km whose length is 100 m and is fed with an optical power of 10 μW and the output power is $7.5\mu W.$	5		
5.	Briefly discuss the primary optical sources. Explain the three basic processes involved in the operation of LED.				
6.	(a)	What is the need of LASER diode? Briefy discuss its operating principle.	5		
	(b)	Enlist the comparison between LED and LASER diode.	5		
7.	(a)	Name three optical detectors. Also discuss the characteristics of photodiodes.	5		
	(b)	List the advantages, disadvantages and applications of Avalanche Photo-detector	5		

- 8. Discuss the following terms associated with photo-detectors: $4 \times 2 \frac{1}{2} = 10$
 - (a) Responsivity
 - (b) Quantum efficiency
 - (c) Dark current
 - (d) Detectivity
- 9. Explain the digital receiver performance calculation based on bit error rate.