No. of Printed Pages: 4

00386

BIELE-005

Maximum Marks: 70

DIPLOMA – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (DECVI)

Term-End Examination
June, 2015

BIELE-005: INDUSTRIAL ELECTRONICS

Time: 2 hours

Note: Question no. 1 is compulsory. Attempt any four questions from the rest. Missing data may be assumed suitably. Use of scientific calculator is permitted. All questions carry equal marks.

1. Choose the correct answer:

 $7 \times 2 = 14$

- (a) When a UJT is used for triggering an SCR, the shape of the waveform of the voltage obtained from the UJT circuit is
 - (i) Sine wave
 - (ii) Saw tooth wave
 - (iii) Square wave
 - (iv) None of the above
- (b) The turn-off time of a transistor is
 - (i) $t_{OFF} = t_d + t_f$
 - (ii) $t_{OFF} = t_s + t_f$
 - (iii) $t_{OFF} = t_d + t_r$
 - (iv) $t_{OFF} = t_d + t_s$

(c)	A freewheeling diode is used in a controlled
	rectifier circuit in the case of

- (i) a resistive load
- (ii) an inductive load
- (iii) a capacitive load
- (iv) All the above

(d) In a single-phase full converter, for continuous conduction each pair of SCRs conduct for

- (i) $\pi \alpha$
- (ii) π
- (iii) a
- (iv) $\alpha \pi$

(e) An ideal transistor switch has

- (i) zero ON-value resistance
- (ii) infinite OFF-value resistance
- (iii) no power loss
- (iv) None of the above

(f) In a three-phase full wave fully controlled bridge rectifier each SCR conducts for a duration of

- (i) 120°
- (ii) 60°
- (iii) 45°
- (iv) 180°

(g)	In a UJT, with V_{BB} as the voltage across two base terminals, the emitter potential at peak point is given by		
	(i)	$\eta V_{ m BB}$	
	(ii)	$\eta V_{ m D}$	

(ii)
$$\eta V_{D}$$

(iii)
$$\eta V_{BB} + V_{D}$$

(iv)
$$\eta V_D + V_{BB}$$

- 2. Define latching and holding currents as (a) applicable to an SCR. Show these currents on the static volt-ampere characteristic curve of an SCR.
 - Explain the different methods for turning (b) on of an SCR.
- 3. (a) Why is a separate freewheeling diode not needed in the case of a single-phase full wave, half controlled bridge rectifier?
 - **(b)** Explain the construction and draw the V-I characteristic curve of a Triac. 7
- 4. (a) A unijunction transistor used for triggering controlled rectifier the silicon has $R_{B1} = 4 k\Omega$ and $R_{B2} = 2.5 k\Omega$. Find
 - the value of intrinsic stand-off ratio. (i)
 - Peak point voltage, if $V_{BB} = 15 \text{ V}$ and (ii) barrier potential = 0.7 V.
 - (b) Explain the working of an oscillator employing UJT for triggering the SCR.

7

7

7

7

5.	Explain how can the transistor can be used as a
	switching element, with the help of its output
	characteristic curve for a switching transistor.
	Also compare the transistor and SCR as
	switching elements.

14

6. (a) Explain the principle of operation of IGBT.

What are its advantages over the power transistors?

7

(b) Differentiate between full controlled bridge rectifiers and half controlled bridge rectifiers.

7

- 7. Write short notes on any **two** of the following: $2\times7=14$
 - (a) Three-phase half-wave Delta-Wye rectifier
 - (b) dv/dt triggering
 - (c) MOS controlled Thyristor