DIPLOMA - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (DECVI) / ADVANCED LEVEL CERTIFICATE COURSE IN ELECTRONICS AND COMMUNICATION

ENGINEERING (ACECVI)

Term-End Examination

95100

June, 2015

BIEL-030: DIGITAL ELECTRONICS

Time: 2 hours

Maximum Marks: 70

Note: Attempt any five questions. Question no. 1 is compulsory. All questions carry equal marks.

- 1. Attempt all the multiple choice and True/False questions. $7 \times 2 = 14$
 - (a) A nibble is equal to 8 bits. [T/F]
 - (b) One MB is equal to 1024 KB. [T/F]
 - (c) A flip-flop is a sequential circuit. [T/F]
 - (d) Ripple counter can be constructed from shift register. [T/F]
 - (e) An octal system has
 - (i) 4 digits
 - (ii) 4 bytes
 - (iii) 8 digits
 - (iv) None of the above

Sim F =	Which is a universal gate?
	(i) NAND
	(ii) OR
	(iii) NOT
	(iv) None of the above
(g) Sim F = drav (a) (b)	How many flip-flops are required for 4-bit register?
	(i) 2
	(ii) 3
	(iii) 4
	(iv) None of the above
Sim	lify the Boolean function
F =	$\overline{(\overline{\overline{A}}+\overline{\overline{B}})+(\overline{A}+\overline{\overline{B}})}$ using Boolean's law. Also
	the Logic diagram and make Truth Table.
(a)	(i) Convert the Decimal number 43.125 to Binary.
	(ii) Convert the Decimal number 19.5 to
	Octal. $2\times 3\frac{1}{2}$
(b)	Why is Excess-3 code self-complementary code? Explain with example.
(a)	Explain and design 3-bit synchronous counter.
(b)	Give the symbol and Truth Table of EX-OR Gate and EX-NOR Gate. Construct an EX-OR gate using NAND gates only. $2\times7=1$

5. Simplify the following Boolean function in SOP and POS forms by means of K-map. Also draw the Logic diagram and Truth Table of output function

 $F(A, B, C, D) = \Sigma(0, 2, 8, 9, 10, 11, 14, 15).$

14

6. What is multiplexer? What are the applications of multiplexer? Design a 16×1 multiplexer using 4×1 multiplexer.

14

- 7. Draw the diagram of the following Hip-flops. Also construct the excitation table : $2\times7=14$
 - (a) D-flip-flop, T-flip-flop
 - (b) Clocked S-R flip-flop with preset and clear, and write the drawbacks of S-R flip-flop.
- 8. Write short notes on any **four** of the following: $4 \times 3 \frac{1}{2} = 14$
 - (a) A/D and D/A Converter
 - (b) Master Slave Flip-Flop
 - (c) Demultiplexer
 - (d) Moore/Mealy Machine
 - (e) PMOS