No. of Printed Pages: 3

BICSE-017

B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

00884

Term-End Examination

June, 2015

BICSE-017: PARALLEL ALGORITHMS

Tii	me : 3 i	hours Maximum Marks	Maximum Marks : 70		
Note: Answer any seven questions. All questions carrequal marks.					
1.	(a)	Explain the PRAM model of parallel computation.	5		
	(b)	Discuss the various performance measures of PRAM algorithms.	5		
2.	lang	e the various parallel programming uages with their properties in detail, with aelp of suitable examples.	10		
3.	(a)	Explain Flynn's taxonomy in detail. Also discuss about super-computer speed measurement in detail.	5		
	(b)	Explain the parallel pipelined algorithm and data parallelism in detail.	5		

4.	(a)	Discuss the various algorithms for	
		multiprocessors as well as multicomputers in detail.	5
	(b)	Explain Eller's algorithm with the help of suitable examples.	5
5.	Discu subs	uss the parallel algorithm for back titution for solving the linear equations on a	
	UMA	A multiprocessor.	10
6.	(a)	Discuss the parallel quick sort and hyper quick sort in detail, with the help of	
		examples.	5
	(b)	What do you mean by alpha-beta and parallel alpha-beta search? Explain.	5
7.	class	t are the various performance measures and sification mechanisms of elementary parallel	
	_	rithms? Discuss in detail with the help of able examples of each mechanism.	10
8.	(a)	What is minimum cost spanning tree? Discuss all pair shortest path algorithms	·
		with the help of examples.	6
	(b)	Explain 2-D Mesh SIMD model.	4

9.	(a)	Explain in detail the various terminologies and algorithms to solve linear system problems.	5
	(b)	Discuss about processor array, MIMD algorithms and multigrid methods in detail.	5
10.	(a)	Explain Inverse discrete Fourier transform with example.	5
	(b)	Discuss Bitonic merge sort and Gauss-Seidel algorithm in detail.	5