No. of Printed Pages: 4

BICS-029

DIPLOMA - VIEP - COMPUTER SCIENCE AND ENGINEERING (DCSVI) / ADVANCED LEVEL CERTIFICATE COURSE IN COMPUTER SCIENCE AND ENGINEERING (ACCSVI)

. Term-End Examination

00104

June, 2015

BICS-029: ALGORITHMS AND LOGIC DESIGN.

Time: 2 hours

Maximum Marks: 70

Note: Attempt any five questions. Question number 1 is compulsory. Each question carries equal marks.

- 1. Choose the correct answer from the four given alternatives:
 - (a) A sorting algorithm based on binary component requires at least how many comparisons?
 - (i) [log n!]
 - (ii) $[\log n^2!]$
 - (iii) [log 2n !]
 - (iv) $[\log (n-1)!]$
 - (b) Which sorting algorithm proceeds on the idea of keeping the first part of the list?
 - (i) Bubble sort
 - (ii) Insertion sort
 - (iii) Quick sort
 - (iv) Selection sort

BICS-029

2

2

(c) The average number of comparisons in bubble sort is 2 n^2 (i) $\frac{\mathbf{n}(\mathbf{n}-\mathbf{1})}{\mathbf{2}}$ (ii) $\frac{n(n+1)}{2}$ (iii) (iv) $\frac{n+1}{2}$ (d) For less amount of data, which one of the following sorting techniques is suitable? 2 (i) Insertion sort (ii) Heap sort (iii) Selection sort (iv) Bubble sort The average run time of quick sort is (e) (i) $O(n \log_2 n)$ $O(n(\log_2 n)^2)$ (ii) (iii) O(n log n) (iv) $O(n^3)$ Which one of the following methods is most **(f)** efficient, if the successor value of k is kept prime to each other? 2 (i) Selection sort (ii) **Bucket** sort (iii) Shell sort (iv) Heap sort

	(g)	In binary search, the worst case time complexity is (i) O(log n) (ii) O(n log n) (iii) O(n log n ²) (iv) O(n log 2n)	2
2.	(a)	What is selection sort ? Differentiate	7
	(b)	between selection sort and insertion sort. What do you understand by analysis of an algorithm? Write an algorithm for deleting duplicate numbers from a linear array.	7
3.	(a)	Write and explain the binary search method. Give an example for contiguous versions.	7
	(b)	Explain all the stages of Program Development Life Cycle.	7
4.	(a)	Write an algorithm using merge sort that finds time complexity to sort 'n' elements $T(n) = O(n \log_2 n)$.	7
	(b)	Write an algorithm to sort numbers using bubble sort.	7
5.	(a)	Draw a flow chart to arrange N-numbers in ascending and descending order.	7
	(b)	What is complexity? Write the types of complexity and explain Big-Oh and	
		Big-Omega notations.	7

P.T.O.

BICS-029

6.	(a)	How do you explain analyzing algorithm? Briefly explain the steps needed to create and test the program.	7
	(b)	Write pseudo code for selection sort.	7
7.	(a)	Differentiate between straight sequential search and binary search technique with suitable examples.	7
	(b)	Describe in brief the garbage collection and compaction.	7
8.	Write	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Ioliow	ring: $4 \times 3 \frac{1}{2} =$	14
	(a)	ring: $4\times 3\frac{1}{2} =$ Recursive Algorithm	14
			14
	(a)	Recursive Algorithm	14
	(a) (b)	Recursive Algorithm Bucket Sort	
	(a)(b)(c)	Recursive Algorithm Bucket Sort Insertion Sort	