## **B.Tech. CIVIL ENGINEERING (BTCLEVI)**

## **Term-End Examination**

00146

June, 2015

BICE-026: GEO-TECHNICAL ENGINEERING - I

Time: 3 hours

Maximum Marks: 70

**Note:** Attempt any **seven** questions. All questions carry equal marks. Assume missing data, if any. Use of scientific calculator is permitted.

- 1. (a) Distinguish between the following:
  - (i) Liquid Limit and Liquidity Index,
  - (ii) Density and Relative Density.
  - (b) A soil has a plastic limit of 25% and a plasticity index of 30. If the natural water content of the soil is 34%, determine the liquidity index and consistency index.

5

 $2 \times 2 \frac{1}{2} = 5$ 

2. (a) The discharge of water collected from a constant head permeameter in a period of 15 minutes is 500 ml. The internal diameter of the permeameter is 5 cm and the measured difference in head between two gauging points 15 cm vertically apart is 40 cm. Calculate the coefficient of permeability.

|                                                                         | permeability of a soil stratum. If K <sub>1</sub> , K <sub>2</sub> , K <sub>3</sub>  |    |  |  |  |
|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----|--|--|--|
|                                                                         | are the permeabilities of layers                                                     |    |  |  |  |
|                                                                         | $h_1$ , $h_2$ , $h_3$ thick, what is its equivalent                                  |    |  |  |  |
|                                                                         | permeability in the horizontal and vertical                                          | _  |  |  |  |
|                                                                         | direction?                                                                           | 5  |  |  |  |
| (a)                                                                     | Explain the stress distribution in soils for                                         |    |  |  |  |
|                                                                         | concentrated loads by Boussinesq's                                                   |    |  |  |  |
|                                                                         | equation.                                                                            | 5  |  |  |  |
| (b)                                                                     | What do you understand by "Pressure                                                  | 5  |  |  |  |
|                                                                         | bulb"? Illustrate with sketches.                                                     | υ  |  |  |  |
| (a)                                                                     | Explain the Mohr-Coulomb strength                                                    |    |  |  |  |
|                                                                         | envelope. Sketch the stress-strain                                                   |    |  |  |  |
|                                                                         | relationship for dense and loose sand.                                               | 5  |  |  |  |
| <b>(b)</b>                                                              | The stresses at failure of the failure plane                                         |    |  |  |  |
| in a cohesionless soil mass are:<br>Shear stress = $4 \text{ kN/m}^2$ , |                                                                                      |    |  |  |  |
|                                                                         |                                                                                      |    |  |  |  |
|                                                                         | Determine the resultant stress on the                                                |    |  |  |  |
|                                                                         | failure plane, the angle of internal friction                                        |    |  |  |  |
|                                                                         | of the soil and the angle of inclination of                                          |    |  |  |  |
|                                                                         | the failure plane to the major principal                                             |    |  |  |  |
|                                                                         | plane.                                                                               | 5  |  |  |  |
| ***                                                                     |                                                                                      |    |  |  |  |
|                                                                         | at are the advantages and disadvantages of a                                         |    |  |  |  |
|                                                                         | kial compression test? Briefly explain how do conduct the test and compute the shear |    |  |  |  |
| -                                                                       | ameters for the soil from the test data.                                             | 10 |  |  |  |
| para                                                                    | inicions for the son from the test data.                                             |    |  |  |  |

(b) Write the factors that affect the

5.

3.

4.

- 6. (a) Describe a suitable method of stability analysis of slopes in
  - (i) purely saturated cohesive soil,
  - (ii) cohesionless soil.

5

(b) Critically discuss the basic assumptions made in the stability analysis of slopes.

5

7. Write short notes on the following:

 $2 \times 5 = 10$ 

- (a) Texture and Structure of Soils
- (b) Soil Formation
- 8. (a) The following classification tests were performed on a specimen recorded from a borehole from a depth of 20 feet. The test sample is black with a strong odour. Give the group symbol and group nature.

5

(b)

| Sieve A | Analysis, | Atterberg Limit |                 |                  |
|---------|-----------|-----------------|-----------------|------------------|
| No. 1   | No. 4     | No. 200         | Liquid<br>Limit | Plastic<br>Limit |
| 100     | 96        | 90              | 80              | 55               |

## Define the following:

- (i) Uniformity Coefficient
- (ii) Curvature Coefficient
- (iii) Relative Density [Density Index]
- (iv) Sensitivity
- (v) Activity

9. (a) A drainage pipe is clogged with sand whose hydraulic conductivity is found to be 9.0 cm/s. The average difference in headwater and tailwater elevation is 1.2 m and it has been observed that there is a flow of 330 cm<sup>3</sup>/s through the pipe. If the pipe is 6 m long and has a cross-section area of 20 cm<sup>2</sup>, what length of the pipe is filled with sand?

(b) A horizontal stratified soil deposit consists of three layers each uniform in itself. The permeabilities of the three layers are  $8 \times 10^{-4}$  cm/s,  $52 \times 10^{-4}$  cm/s, and  $6 \times 10^{-4}$  cm/s and their thicknesses are 7, 3 and 10 m respectively. Find the effective average permeability of the deposit in the horizontal and vertical direction.

First layer 7 m

Second layer 3 m

Third layer 10 m

5

10. (a) Define the terms "Compression index",

"Coefficient of Consolidation" and

"Coefficient of Compressibility" and
indicate their units and symbols.

mbols. 5

(b) A soil in the borrow pit is at a dry density of 17 kN/m<sup>3</sup> with a moisture content of 10%. The soil is excavated from this pit and compacted in an embankment to dry density of 18 kN/m<sup>3</sup> with a moisture content of 15%. Compute the quantity of soil to be excavated from the borrow pit and the amount of water to be added for 10 m<sup>3</sup> of compacted soil in the embankment.