No. of Printed Pages: 3

BICE-025

B.Tech. CIVIL ENGINEERING (BTCLEVI)

Term-End Examination

June, 2015

00576

BICE-025 : HYDRAULICS AND HYDRAULIC MACHINES

Time: 3 hours

Maximum Marks: 70

Note: Answer any **seven** questions. Answers are to be written in English only. Assume missing data, if any. Use of calculator is permitted.

- 1. (a) Describe the following terms using the mathematical expression:
- 4

- (i) Steady flow
- (ii) Unsteady flow
- (iii) Uniform flow
- (iv) Non-uniform flow
- (b) Derive the expression for the discharge through open channel by Chezy's formula.
- 2. Find the slope of the bed of a rectangular channel of width 5 m, when depth of water is 2 m and rate of flow is given as 20 m³/sec. Take Chezy's Constant C = 50.

10

6

3.	width 6 m, depth of water 3 m and side slope of 3 horizontal to 4 vertical, when the discharge		
	thro	ugh the channel is 30 m ³ /sec.	10
4.	(a)	What is the condition for the most economical rectangular channel?	2
	(b)	A rectangular channel carries water at the rate of 400 litres/sec, when bed slope is 1 in 2,000. Find the most economical dimension	
		of the channel, if $C = 50$.	8
5.	(a)	What do you understand by specific energy curve?	3
	(b)	Derive the expression of minimum specific energy in terms of critical depth.	7
6.	chan	discharge of water through a rectangular anel of width 8 m, is 15 m ³ /sec, when depth of of water is 1.2 m.	
	Calc	ulate	
	(a)	Specific energy of the flowing water	
	(b)	Critical depth and critical velocity	4
	(c)	Value of minimum specific energy	2
7.	(a)	For deriving the expression for depth of hydraulic jump in open channel flow, what	
		are the general assumptions made?	4

	(b)	A sluce gate discharges water into a horizontal rectangular channel with a velocity of 10 m/sec. and depth of flow of 1 m. Determine the depth of flow after the jump and consequent loss in total head.	6
8.	Write short notes on the following:		10
	(a)	Pelton Turbine	
	(b)	Tangential Flow Turbine	
	(c)	Overall Efficiency of a Turbine	
9.	A Pelton wheel is having a mean bucket diameter of 1 m and is running at 1,000 r.p.m. The net head on the Pelton wheel is 700 m. If the side clearance angle is 15° and discharge through nozzle is 0·1 m ³ /sec, find the		
	(a)	Power available at the nozzle,	5
	(b)	Hydraulic efficiency of the turbine.	5