No. of Printed Pages: 7

BET-012

DIPLOMA IN CIVIL ENGINEERING (DCLE(G)) / DIPLOMA IN ELECTRICAL AND MECHANICAL ENGINEERING (DEME) / DCLEVI / DMEVI / DELVI / DECVI / DCSVI / ACCLEVI / ACMEVI / ACELVI / ACECVI / ACCSVI

Term-End Examination

June, 2015

00230

BET-012: PHYSICS

Time: 2 hours

Maximum Marks: 70

Note: Question no. 1 is **compulsory**. Attempt any **four** questions from the remaining. Use of scientific calculator is permitted.

- 1. Choose the correct answer:
 - (a) For steady flow, the velocity of flow

- (i) changes with time
- (ii) remains constant with time
- (iii) changes with space coordinate
- (iv) remains constant with space coordinate

(b) Centre of buoyancy is

2

- (i) same as the centre of gravity of body
- (ii) the centre of volume of liquid displaced by body
- (iii) same as metacentre
- (iv) same as centre of pressure

(c) Fourier's law of heat conduction is given as, where Q is the amount of heat flow $\Delta T = \text{change in temperature}$:

$$(i) \qquad \frac{Q}{\Delta t} = - \; kA \; \frac{\Delta T}{\Delta x} \label{eq:delta_t}$$

(ii)
$$\frac{\mathbf{Q}}{\Delta t} = \frac{\mathbf{k}}{\mathbf{A}} \frac{\partial \mathbf{x}}{\partial \mathbf{T}}$$

$$(iii) \quad \frac{Q}{\partial A} = - \ k \Delta t \ \frac{\partial x}{\partial T}$$

$$(iv) \quad \frac{Qk}{\Delta t} = \frac{A\Delta T}{\Delta x}$$

(d) The net potential energy for three point charges $\mathbf{q}_{1,}$ \mathbf{q}_{2} and \mathbf{q}_{3} is given as

(i)
$$\frac{1}{4\pi\epsilon_0} \frac{q_1 q_2 q_3}{r_{12}}$$

(ii)
$$\frac{1}{4\pi\epsilon_{0}} \frac{q_{2}q_{3}q_{1}}{r_{23}}$$

$$(iii) \quad \frac{1}{4\pi\epsilon_0} \, \frac{q_1q_2}{r_{12}} + \frac{1}{4\pi\epsilon_0} \, \frac{q_2q_3}{r_{23}} + \frac{1}{4\pi\epsilon_0} \, \frac{q_1q_3}{r_{13}}$$

(iv)
$$\frac{1}{4\pi\epsilon_{o}} \left(\frac{q_{1}q_{2} + q_{2}q_{3}}{r_{12} r_{23} r_{13}} \right)$$

- (e) At a distance of 60 m from a jet airliner engaged in take-off, the intensity of sound is 1 W/m². What is the intensity at a distance of 180 m in the same direction?
- 2

- (i) 0.22 W/m^2
- (ii) 0·44 W/m²
- (iii) $0.30 \,\mathrm{W/m^2}$
- (iv) 0·11 W/m²

(f) The magnetic field due to current carrying wire, carrying a current I at a distance r is given as

(i)
$$B = \frac{\mu_0 I}{2\pi r}$$

(ii)
$$B = \frac{\mu_0 I^2}{2\pi r}$$

(iii)
$$B = \frac{\mu_0 I^2}{2\pi r^2}$$

(iv)
$$B = \frac{\mu_0 \sqrt{I}}{2\pi r}$$

(g) In a simple harmonic motion, the acceleration is given by

2

(i)
$$\mathbf{a} = \omega^2 \sqrt{\mathbf{x}}$$

(ii)
$$\mathbf{a} = -\omega \mathbf{x}^2$$

(iii)
$$a = -\omega^2 x$$

(iv)
$$a = \omega^2 x$$

2. (a) How many ice cubes (at 0°C) must be added to a bowl containing a litre of boiling water at 100°C, so that the resulting mixture reaches a temperature of 40°C? Assume that each ice cube has a mass of 20 g and that the bowl and the environment do not exchange heat with the water.

(b) Define the various kinds of specific heat of a gas. Also prove the relationship $C_p = C_v + R$, where C_p and C_v are the specific heat at constant pressure and volume respectively and R is the universal gas constant.

7

3. (a) Explain Transverse and Longitudinal wave motion with suitable examples.

6

(b) Briefly explain the periodic waves.

4

(c) An ocean wave has a wavelength of 120 m and a period of 8.77 s. Calculate the frequency and speed of this wave.

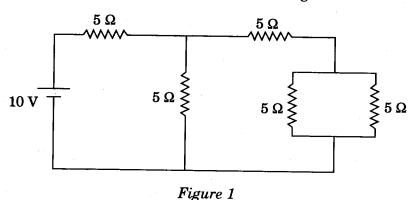
4

4. (a) An object of size 3.0 cm is placed at a distance of 14 cm in front of a concave lens of focal length 28 cm. Calculate the distance of the image formed. What type of image will it be?

7

(b) What is a 'Mirage' and why does it occur? Explain in detail with the help of a neat diagram.

5. (a) Derive the equation of continuity in Cartesian coordinates.


7

7

7

(b) When a solid rubber ball is taken from the surface to the bottom of a lake, its volume decreases by 0.0012%. The depth of the lake is 360 m, density of lake water is 10^3 kg/m³. Calculate the bulk modulus of rubber. Take g = 10 m/s².

- 6. (a) Discuss in detail the Faraday's laws of electrolysis and applications of electrolysis.
 - (b) Calculate the current flowing through each resistor in the circuit shown in Figure 1.

- 7. Write short notes on any **four** of the following: $4\times 3\frac{1}{2}=14$
 - (a) Venturimeter
 - (b) Luminous Intensity
 - (c) Meter Bridge
 - (d) Biot-Savart Law
 - (e) Specific Heat Capacity
 - (f) Cyclotron