P.T.O.

B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)

Term-End Examination

00570

BMF-035

June, 2015

BME-035: INDUSTRIAL ENGINEERING AND OPERATIONS RESEARCH

Maximum Marks: 70 Time: 3 hours Note: (i) Answer any seven questions. Use of calculator is allowed. (ii) Assume missing data, if any. (iii) 1. (a) What are the various measures to improve productivity of a firm? 5 Describe in brief the tools and techniques of (b) Industrial Engineering. 5 Differentiate between method study and 2. (a) work measurement. State the objectives of each. 5 Last week a company produced 150 units in **(b)** 200 hours of labour. This week the company produced 180 units in 220 hours of labour. What is the growth rate in productivity? 5

1

3. (a) What are the principles of motion economy related to the use of human body, work place, and tools and equipments?

5

(b) What is two-handed process chart? Explain through an example.

5

4. Discuss the various factors affecting product design.

10

5. (a) Explain the impact of noise, temperature humidity and lighting on the working of an operation.

5

(b) Describe the features of man-machine system.

5

6. (a) What do you mean by unbounded solution and infeasible problem in LPP?

3

(b) Use Simplex method to solve the following problem:

7

 $Maximize: z = 2x_1 + 5x_2$

subject to : $x_1 + 4x_2 \le 24$

$$3x_1 + x_2 \le 21$$

$$x_1 + x_2 \le 9$$

$$x_1, x_2 \ge 0$$

7. Find the optimal solution to the following transportation problem in which the cells contain the transportation cost in rupees/unit:

	\mathbf{W}_{1}	$\mathbf{W_2}$	W_3	W_4	W_5	Available
$\mathbf{F_1}$	7	6	4	5	9	40
$\mathbf{F_2}$	8	5	6	7	8	30
$\mathbf{F_3}$	6	8	9	6	5	20
$\mathbf{F_4}$	5	7	7	8	6	10
Required	30	30	15	20	5	100
						(Total)

8. Solve the following game by dominance property: 10

9. Write short notes on any **four** of the following: $4\times2\frac{1}{2}=10$

- (a) Product Life Cycle
- (b) Goal Programming
- (c) Design for Assembly (DFA)
- (d) Transhipment Problem
- (e) Predetermined Motion Time Standard (PMTS)
- (f) Simulation

10