No. of Printed Pages: 3

BIEE-009

P.T.O.

B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

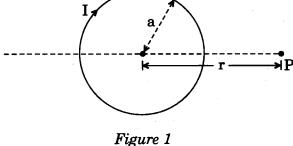
Term-End Examination

00426

BIEE-009

June, 2015

BIEE-009: APPLIED ELECTROMAGNETICS


Time: 3 nours Maximum Marks		: 70
No	e: Attempt any seven questions. Assume missi data, if any.	ing
1.	State the Gauss's law and prove it for a charge q. Also define electric flux.	10
2.	Derive the expression for electric field due to a uniform infinite line charge at a point P, which is at distance 'r' perpendicular to the charge time.	10
3.	What is electric field polarization? Also explain elliptical polarization with the help of a mathematical expression.	10
4.	 If the electric potential is given by V = x²yz + Ay³, (a) find A so that Laplace's equation is satisfied. (b) With the value of A, determine the electric 	10
	field at $(2, 1, -1)$.	10

- Derive the expression for electrical energy density 5. stored in static electric field.
- 10

10

Discuss the Biot-Savart's law. Also obtain the 6. expression for magnetic field at point P due to a current (I) carrying ring as shown in Figure 1. The point P is at distance 'r' from the centre of the ring and the radius of the ring is 'a'.

- Discuss the various kinds of transmission lines. 7. What are the elements of a transmission line? Also discuss about the primary constants of a transmission line.

10

Write the Maxwell's equations. Also explain their 8. practical meaning and relate them to previous theories.

10

State and prove Poynting's theorem. 9.

10

- 10. Write short notes on any **two** of the following: $2\times5=10$
 - (a) Wave Polarization
 - (b) Standing Wave Ratio
 - (c) Continuity Equation