No. of Printed Pages: 3

BIEE-008

B.Tech. - VIEP - ELECTRICAL ENGINEERING (BTELVI)

OCC Term-End Examination
June, 2015

BIEE-008 : ELECTRO-MECHANICAL ENERGY CONVERSION - I

Time: 3 hours

Maximum Marks: 70

Note: Attempt any **five** questions. All questions carry equal marks. Use of scientific calculator is allowed.

- (a) Define and explain the terms 'energy' and 'co-energy'. Also show that energy and co-energy are numerically equal for a linear system.
 - (b) Discuss briefly the general analysis of electromechanical system, and derive an expression for the mechanical force developed in a singly excited system.

7

2.	(a)	Describe the working of a four point starter for a d.c. shunt motor, with the help of a neat diagram.	7
	(b)	Explain what would happen if the d.c. motor is directly switched on to the supply, without any starter.	7
3.	(a)	A d.c. shunt motor draws 80 A at 220 V on full-load. The armature and field resistances are 0.2 ohm and 110 ohms respectively. If the stray losses amount to 800 W, determine the following: (i) Output power (ii) Electrical efficiency (iii) Mechanical efficiency	8
	(b)	Explain the torque-current characteristics of a d.c. series motor.	6
4.	(a)	Explain with circuit diagrams, the open-circuit and short-circuit test to be carried out for the determination of the parameters of a single phase transformer.	8
	(b)	Derive the condition for maximum	

efficiency of a single phase transformer.

6

5.	(a)	Oraw and explain complete phasor diagram of a single phase transformer for capacitive load.	7
	(b)	Explain the construction and working of an auto-transformer.	7
6.	(a)	What are the conditions for parallel operation of two 3-phase transformers? Also write the advantages of a 3-phase transformer over a single-phase transformer.	7
	(b)	Draw and explain the open delta connections of a transformer. Also write the applications and disadvantages of it.	7
7.	Write follow		14
	(a)	Hopkinson's Test	
	(b)	Interpoles and Compensating Windings	
	(c)	Harmonics in three-phase transformer	