No. of Printed Pages: 4

B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

00396

June, 2015

BIEL-007 : SIGNALS AND SYSTEMS

Time : 3 hours

Maximum Marks: 70

BIEL-007

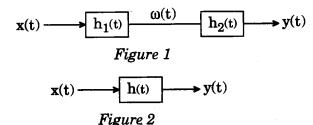
Note: Attempt any seven questions.

1. Determine if the following system described by

 $\mathbf{y}(\mathbf{t}) = \sin \left[\mathbf{x}(\mathbf{t}+2)\right]$

is memoryless, causal, linear, time invariant and stable. 10

2. Determine the convolution of the two continuous-time functions given below : 10


 $\mathbf{x}(t) = 3 \cos 2t$ for all t

and
$$h(t) = e^{-|t|} = \begin{cases} e^t & \text{for } t < 0 \\ e^{-t} & \text{for } t \ge 0. \end{cases}$$

P.T.O.

1

- 3. The system shown in Figure 1 is formed by connecting two systems in cascade. The impulse responses of the systems are given by $h_1(t)$ and $h_2(t)$ respectively and $h_1(t) = e^{-2t} u(t)$, $h_2(t) = 2e^{-t} u(t)$.
 - (a) Find the impulse response h(t), of the $t_{i,j}$ overall system shown in Figure 2.
 - (b) Determine if the overall system is BIBO stable. 10

4. Figure 3 shows the periodic rectangular waveform. Obtain its Fourier series representation. 10

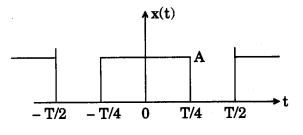


Figure 3

5. (a) Derive the Fourier transform for Signum function.

(b) Discuss the properties of Fourier transform. 5

5

BIEL-007

6. The frequency response $H(j\omega)$ of a causal LTI filter is as shown in Figure 4. Find the filtered output signal y(t) for the input signals $x(t) = \sin(\omega_0 t) u(t)$.

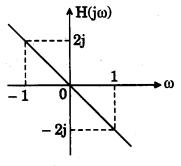


Figure 4

7. Find the Z-transform of the following sequence : 10

$$\mathbf{x}(\mathbf{n}) = \begin{cases} 2^{\mathbf{n}} & \mathbf{n} < 0\\ \left(\frac{1}{2}\right)^{\mathbf{n}}, & \mathbf{n} = 0, 2, 4\\ \left(\frac{1}{3}\right)^{\mathbf{n}}, & \mathbf{n} = 1, 3, 5 \end{cases}$$

P.T.O.

10

3

8. (a) Determine whether or not the signal given below is periodic and determine the fundamental period, if the signal is periodic :

 $\mathbf{x}(\mathbf{n}) = \sin\left(\pi + \mathbf{0} \cdot 2\mathbf{n}\right)$

- (b) Find the even part of the following signal : 5
 x(n) = u(n)
- 9. Write short notes on any *two* of the following : $2 \times 5 = 10$
 - (a) Properties of Z-transform
 - (b) Applications of Z-transform
 - (c) Properties of non-linear systems

5