No. of Printed Pages: 4

BIEL-006

## B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

00896

## Term-End Examination June, 2015

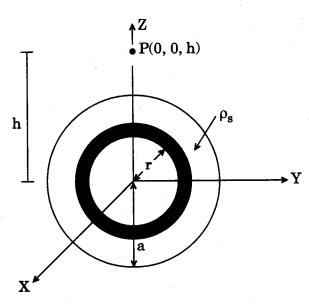
**BIEL-006: ELECTROMAGNETIC FIELD THEORY** 

Time: 3 hours

Maximum Marks: 70

**Note:** All questions have same weightage (10 marks). Attempt any **seven** questions.

- 1. (a) A vector field is given by  $B = \frac{\lambda}{r} \frac{\cos \phi}{r}$ . Verify Stokes' theorem for a segment of a cylindrical surface defined by r = 2;  $\pi/3 \le \phi \le \pi/2$  and  $0 \le z \le 3$ .
  - (b) A sphere of radius 2 cm contains a volume charge density  $\rho_v$  given by  $\rho_v = 2\cos^2\theta \ C/m^3.$  Find the total charge Q contained in the sphere.
- 2. (a) State Ampere's circuital law and write point form of Ohm's law for perfect dielectric and perfect conductor.


5

5

5

(b) Find the electric field at a point P(0, 0, h) in free space at a height h on Z-axis due to a circular disk of charge in the X-Y axis with uniform charge density  $\rho_s$  as shown below.

5



3. (a) Derive an expression for total magnetic force on a current carrying conducting wire when placed in a uniform magnetic field.

5

(b) Explain charge-continuity equation.

5

4. (a) Derive an expression for skin depth, when the wave is propagating in lossy medium.

5

(b) Define characteristic impedance of the line.
What are the units of transmission line parameters?

5

|    |     | load consisiting of a 50 $\Omega$ resistor in series with a 10 pF capacitor. Find the reflection coefficient at the load for a 100 MHz signal.      | 5 |
|----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|---|
| •  | (b) | Show that $ \Gamma  = 1$ for a purely reactive load in transmission lines.                                                                          | 5 |
| 6. | (a) | Derive an expression for Snell's law with a neat diagram.                                                                                           | 5 |
|    | (b) | Define reflection coefficients and transmission coefficients for normal                                                                             | - |
|    |     | incident wave, with diagram.                                                                                                                        | 5 |
| 7. | (a) | The dimensions of a waveguide are $2.5 \times 1$ cm. The operating frequency is $8.6  \mathrm{GHz}$ . Find the following:                           | 5 |
|    |     | (i) Possible modes                                                                                                                                  |   |
|    |     | (ii) Cut-off frequency                                                                                                                              |   |
|    |     | (iii) Guided wavelength                                                                                                                             |   |
|    | (b) | Derive the equation for field components $(E_x, E_y, H_x, H_y) \text{ within the rectangular}$                                                      |   |
|    |     | waveguide placed in a rectangular co-ordinate system.                                                                                               | 5 |
| 8. | (a) | What is the condition for a wavelength to propagate through a rectangular waveguide? How does it depend on the physical dimensions of a rectangular |   |
|    |     | waveguide?                                                                                                                                          | 5 |

. 5. (a) A 100  $\Omega$  transmission line is connected to a

- (b) Compare degenerate modes with dominant modes.
- 9. (a) Define magnetic dipole. Derive an expression for magnetic energy density stored in solenoid inductor, in terms of H. 5
  - (b) Given vectors:  $A = 2\hat{x} 3\hat{y} + \hat{z}$ ,  $B = 2\hat{x} \hat{y} + 3\hat{z}$ ,  $C = 4\hat{x} + 2\hat{y} 2\hat{z}$ . Show that C is perpendicular to both A and B.
- 10. Write short notes on any **two** of the following:  $2 \times 5 = 10$ 
  - (a) Biot-Savart's Law
  - (b) Impedance Matching
  - (c) Divergence Theorem