No. of Printed Pages : 2

BIEL-005

00596

4

6

10

10

10

B.Tech. – VIEP – ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

Term-End Examination

June, 2015

BIEL-005 : ANALOG ELECTRONIC CIRCUITS

Time : 3 hours

Maximum Marks : 70

Note : Attempt any **seven** questions. All questions carry equal masks.

- 1. (a) Define h-parameters and their limitations.
 - (b) Determine the current gain, voltage gain, input resistance and output resistance of CE amplifier, if $R_L = 30 \text{ k}\Omega$, $R_S = 600 \Omega$, $h_{ie} = 2,000 \Omega$, $h_{re} = 1.6 \times 10^{-4}$, $h_{fe} = 49$ and $h_{oe} = 50 \mu A/V$.
- 2. Draw a common base amplifier and its h-parameter equivalent circuit. Derive the expressions for input impedance, voltage gain, current gain and output impedance.
- 3. Draw n-stage CE cascaded amplifier and derive the expressions for voltage gain, current gain, input impedance and output impedance.
- 4. Draw and explain the high frequency transistor model for CE configuration of BJT. Derive the expression for Gain-Bandwidth product.

P.T.O.

BIEL-005

5.	oper suita	Explain push-pull concept and complete operation of Class-B push-pull amplifier, with suitable diagrams. Also mention the distortions in push-pull arrangement. 10		
6.	(a)	Mention the general behaviour of tuned amplifier. Why are these required ?	5	
	(b)	Differentiate between series and parallel resonance circuits. Derive the formula for circuit impedance at resonance.	5	
7.		the negative feedback advantages and ain each with suitable proof.	10	
8.	(a)	Give the classification of oscillators and provide the condition for stability of oscillations.	5	
	(b)	Comment on tuned-base oscillators and their limitations.	5	
9.	(a)	Define multivibrator and explain the various modes of operation in brief.	5	
	(b)	Draw and explain the transistorized circuit for astable multivibrator.	5	
10.	Write notes on any <i>two</i> of the following : 2×5		=10	
	(a)	Darlington Pair		
	(b)	Wein Bridge Oscillator		
	(c)	UJT		

1,000