No. of Printed Pages: 3

BIEL-003

Maximum Marks: 70

B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

00676

Time: 3 hours

Term-End Examination

June, 2015

BIEL-003 : DIGITAL ELECTRONICS

Note: Attempt any seven questions in all. All questions carry equal marks. Minimize the following logic function using 1. K-maps and realize using NAND and NOR 10 gates: $F(A, B, C, D) = \sum m(1, 3, 5, 8, 9, 11, 15) + d(2, 13).$ Simplify the following expression using 2. (a) Boolean algebra technique: 5 Z = AB + A(B + C) + B(B + C). Distinguish between minterms and maxterms. 3 (b) 2 (c) What are Universal gates? Draw the logic diagram of a full subtractor 3. (a) using half subtractors and explain its working with the help of a truth table. 7 What is meant by priority encoder? 3 **(b)**

4.	(a)	Design a 32:1 multiplexer using two 16:1	
		multiplexers and a 2:1 multiplexer.	5
	(b)	Implement the following function using a 3-line to 8-line decoder:	5
		$S(A, B, C) = \sum m(1, 2, 4, 7)$ $C(A, B, C) = \sum m(3, 5, 6, 7)$	т (
5.	(a)	With the help of a suitable diagram, explain how you convert a JK flip-flop to a T type flip-flop.	5
	(b)	What is a flip-flop? What is the difference between a latch and a flip-flop? List out the application of flip-flop.	5
6.		t are synchronous counters? Design a -5 synchronous counter using JK flip-flops.	10
7.	expl	w TTL circuit for Totem-pole output and ain its working. Why is it not used for ED AND connection?	10
8.	(a)	What are the advantages of CMOS logic? Explain CMOS Inverter with the help of a	
	,	neat diagram.	6
	(b)	Discuss briefly the concept of PLA.	4
9.	(a)	Draw the logic diagram of 16-bit ROM Array and explain its principle of operation.	6
	(b)	The capacity of $2k \times 16$ PROM is to be expanded to $16k \times 16$. Find the number of PROM chips required and the number of address lines in the expanded memory.	f

- 10. Write short notes on any **two** of the following: $2\times5=10$
 - (a) Digital Comparator
 - (b) Algorithmic State Machines
 - (c) Flash Memory