No. of Printed Pages : 4

BICS-007

B.Tech. - VIEP - COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination June, 2015

00536

BICS-007 : DATA STRUCTURES

Time: 3 hours

Maximum Marks: 70

Note : Question no. 1 is **compulsory**. Answer **four** other questions. All questions carry equal marks.

- 1. (a) Define Big O, Theta and Omega notations. Is a function $b \cdot \log(n) = O(n^2)$, where b is a positive constant? Justify.
 - (b) On what input data does Quick sort algorithm for sorting exhibit its worst case behaviour ? Justify with an example of 8 elements. Determine the maximum space needed.
 - (c) Prove that all the leaves of a binary tree will be traversed in the same sequence in all the three traversals.

BICS-007

(**d**)

Draw a binary tree whose preorder and inorder traversals are

A	В	D	С	Ε	G	Η	I	J	Κ	$\mathbf{F}_{\mathbf{r}}$
В	D	A	G	Е	J	Ι	Κ	H	С	\mathbf{F}

(e) If the complexity of the algorithm 'doit' can be expressed as $O(n) = n^2$, calculate the complexity of the following program segment :

i = 1 loop (i < n)doit (...) I = I * 2

2+3+3+3+3+3

2. Define a spanning tree. Write an algorithm to determine maximum spanning tree of a weighted graph. Also argue for the correctness of your algorithm. Also determine the time complexity of the algorithm. Will an edge of highest cost always be in the solution obtained ?

- **3.** (a) What is hashing ? Explain the following terms used in it :
 - (i) Hashing function
 - (ii) Synonyms
 - (iii) Overflow
 - (iv) Collision resolution
 - (b) Define an AVL tree. Where is it used and why? Construct one such tree for the following list of elements :

3, 5, 11, 8, 4, 1, 12, 7, 2, 6, 10

6+8

14

BICS-007

- 4. (a) A circular singly linked list contains integer elements. Variable pointer points to the last node in the list. Write a procedure to print the positive (not including zero) elements in the list.
 - (b) Explain three applications each of stacks and queues in Computer science. 8+6
- **5.** (a)

Change the following infix expression to post-fix and prefix expressions.

(a-2 * (b + c) - d * e) * f.

Show all the steps. Why is post-fix preferred to infix form ? Which data structure is used for it and why ?

- (b) Describe the data structure to represent the following :
 - (i) Sparse Matrix
 - (ii) **Priority Queue**
 - (iii) Threaded Link
 - (iv) An algebraic expression of the form :

 $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$

6. (a)

How can a sparse matrix be stored as a linked list so that the element of a given row i and column j can be accessed easily ? Store the following matrix in the suggested format :

0	0	0	0	0	0
1	Ò	0	0	0	2
	3				
0	0	0	4	0	0

(b) Write the procedure to reverse a singly linked list without creating an extra linked list. 7+7

BICS-007

3

7 + 7

- 7. Design a method for keeping two stacks within a single array S (space size) so that neither the stack overflows until all of memory reserved is used and an entire stack is never shifted to a different location within the array. Write C routines for push1, push2, pop1 and pop2 to manipulate the two stacks.
- 14

8. Explain the following :

3+3+3+3+2

- (a) Difference between Class P and Class NP
- (b) Difference between Internal and External sorting
- (c) Difference between Linear and Non-linear data structures
- (d) Different representations of a graph
- (e) Difference between Dynamic Programming and Divide and Conquer approach

4