No. of Printed Pages: 3

ET-533(B)

B.Tech. Civil (Water Resources Engineering) Term-End Examination

00736

June, 2015

ET-533(B): OPEN CHANNEL FLOW

Time: 3 hours

Maximum Marks: 70

Note: Attempt any five questions. All questions carry equal marks. Neat and well-labelled sketches are to be given where necessary. Use of calculators is permitted.

 (a) Explain velocity distribution in a Rectangular Channel. Also draw typical curves of equal velocity in various channel sections.

6

(b) Water flows in a rectangular channel 2.5 m wide at a velocity of 2.8 m/s and a depth of 2.2 m. There is an upward step of 0.72 m in the channel bed. What expansion in width must take place simultaneously for this flow to be possible as specified?

8

2. Describe the computation of water surface profile by the following methods:

14

- (a) Graphical Integration Method
- (b) Direct Integration Method

P.T.O.

3.	(a)	A discharge of 15 m 3 /s flows with a depth of 1.5 m in a rectangular channel 5 m wide. At a downstream section the width is reduced to 4.5 m and the channel bed raised by Δz . What will be the state of water surface elevations in the transitions when	
		(i) $\Delta z = 0.10 \text{ m} \text{ and}$	
		(ii) $\Delta z = 0.30 \text{ m}$?	10
	(b)	What are the important metering flumes? Explain any one of them.	4
4.	(a)	What is Hydraulic jump? What are its applications? Explain sequent depths.	6
	(b)	Design a slotted roller bucket type energy dissipater with reference to the following data, as applicable to a given spillway: Total discharge = $1060 \text{ m}^3/\text{s}$ Width of bucket = 66.25 m	
		Maximum reservoir pool level in the reservoir = 242.50 m Crest level of spillway = 234 m	
		Maximum tail water level = 225 m	8
5.	(a)	Explain the constancy of a wave period and classify water waves according to relative	
		depth.	6
	(b)	approaching the coast from deep waters. Calculate the wave length in this deep water, as well as in 10 cm depth and 5 m depth of this water body. What are the	0
		corresponding phase velocities?	8

6.	(a)	List the assumptions and derive the dynamic equation of uniformly progressive flow.	10
	(b)	Describe the wave profile of uniformly progressive flow.	4
7.		plain, with a neat sketch, Hydraulic jump e stilling basin with horizontal apron.	14
8.	(a)	Write short notes on Resistance diagram and its applications.	6
	(b)	Explain the concept of specific momentum or specific force.	8