No. of Printed Pages: 7

ET-105(B)

B.Tech. Civil (Construction Management)/ B.Tech. Civil (Water Resources Engineering)

Term-End Examination

00155

June, 2015

ET-105 (B): CHEMISTRY

Time: 3 hours

Maximum Marks: 70

Note: Question no. 1 is **compulsory**. Attempt any **five** questions from question no. 2 to 10. Use of calculator is allowed.

1. (a) Total number of σ and π bonds in acetylene is

2

- (i) 3σ , 2π
- (ii) 2σ, 3π
- (iii) 2σ , 2π
- (iv) 1σ , 3π
- (b) Red absorption maxima for Chl-a occurs at 2
 - (i) 670 nm
 - (ii) 642 nm
 - (iii) 662 nm
 - (iv) 652 nm

2

$$(i) \qquad \left(\frac{\partial V}{\partial T}\right)_{\!\mathbf{P}} = \beta/V$$

$$(ii) \qquad \left(\frac{\partial V}{\partial T}\right)_{\!\mathbf{p}} = V/\beta$$

(iii)
$$\left(\frac{\partial V}{\partial T}\right)_{\mathbf{P}} = \beta V$$

$$(iv) \qquad \left(\frac{\partial V}{\partial T}\right)_{\!\mathbf{P}} = -\beta V$$

(d) For an ideal gas undergoing adiabatic changes

2

(i)
$$TV^{\gamma-1} = constant$$

(ii)
$$T^{\gamma} V^{\gamma-1} = constant$$

(iii)
$$T V^{1-\gamma} = constant$$

(iv)
$$T V^{1/\gamma} = constant$$

Correct Gibbs-Helmholtz equation is 2

(i)
$$\Delta G = \Delta H - T\Delta S$$

(ii)
$$\Delta G = T\Delta S - \Delta H$$

(iii)
$$-\Delta G = \Delta H + T\Delta S$$

(iv)
$$\Delta G = \Delta H + T \Delta S$$

(e)

(f)	Total number of atoms per unit cell in a primitive cell is		
	(i)	1	
	(ii)	2	
	(iii)	3	
	(iv)	4	
(g)		netry of the complexes formed by	
		sition metal ions using $d^2 sp^3$	o
	•	idization is	2
	(i)	Tetrahedral	
	(ii)	Octahedral	
	(iii)	Square planar	
	(iv)	Trigonal	
(h)	CaC	$_2 + N_2 \longrightarrow X' + CaNCN; X'$ is	2
	(i)	C	
	` '		
	(ii)	N_2	
	(iii)	CaCN	
	(iv)	CaN	

3

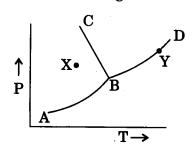
ET-105(B)

P.T.O.

(i) 'X' in the following reaction is

$$\text{CH}_{3}\text{CHBrCH}_{2}\text{Br}\xrightarrow[\text{C}_{2}\text{H}_{5}\text{OH}]{}$$

$$CH_3CH = CHBr \xrightarrow{NaNH_2} X'$$


- (i) CH₃CH₂CH₃
- (ii) $CH_3CH = CHNH_2$
- (iii) $CH_3C \equiv CH$
- (iv) CH₃CH₂CH₂Br
- (j) Complete the following reaction:

$$CH_3$$
 $|$
 $CH_3 - C = CH + H_2O \xrightarrow{H^+} \dots$

2. (a) Define Raoult's law.

2

(b) The phase diagram for a one-component system is shown in the figure :

		(i) Calculate the number of degrees of freedom at points B, X and Y.	3
		(ii) Find out the number of phase(s) along AB, BC and BD.	1
	(c)	Draw the typical phase diagram for two partially miscible liquids.	4
3.	(a)	How is fuel cell represented?	2
	(b)	For the galvanic cell	
		$Ag(s) \mid AgCl(s) \mid KCl (1.0 M) \mid Hg_2Cl_2(s) \mid Hg$	$\mathbf{g}\left(l ight)$
		the EMF of the cell is 0.058 V at 298 K and 0.0614 V at 308 K.	
		(i) Write down the cell reaction.	2
		(ii) Calculate ΔS° , ΔG° and ΔH° at 298 K.	
	-	2×3	3=6
4.	(a)	What is buffer solution?	2
	(b)	For 0.1 M solution of NH ₄ Cl, the ionization	
		constant K_b is 1.80×10^{-5} at 298 K.	
		Calculate the	
		(i) Hydrolysis constant (K_n)	2
		(ii) Degree of hydrolysis α	3
		(iii) pH of the 0·1 M NH ₄ Cl solution.	3
5.	(a)	Define specific growth rate (μ) for the	
		microbial cell growth.	2

	(6)	following: 4×2 :	=8
		(i) Transcription	
		(ii) Totipotency	
		(iii) Antibody	
		(iv) Generation time	
		(v) Enzyme	
		(vi) Chemotherapy	
6.	(a)	y sy Willow down	
		the reactions.	4
	(b)	What do you understand by the following : 3×2 =	= 6
		(i) Plasticizers	
		(ii) Natural rubber	
		(iii) Co-polymer	
7.	(a)	(i) Calculate the coefficient of	
		performance of a refrigerator which	
		works between 273 K and 305 K.	2
		(ii) Calculate the minimum amount of work required to freeze 0.5 kg of water at 273 K. Latent heat of fusion	
		C:	2
		(iii) Calculate the quantity of heat given	2
	(b)	What do you mean by entropy changes?	
	\·/	D. J	
			1
		Louis mai diange.	4

8.	(a)	$PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g).$	
		In a 20 L vessel at 250°C, the equilibrium mixture contains 0.5 mole PCl ₃ , 0.3 mole	
		PCl ₅ , 0·5 mole Cl ₂ . Find the equilibrium	
		constant.	4
	(b)	Calculate the free energy change for expansion of 2 moles of ideal gas from	
		pressure 700 to 70 mm at 300 K.	4
	(c)	Write the Helmholtz free energy expression.	2
9.	(a)	What is spectrochemical series?	2
	(b)	What are the factors that affect crystal field splitting?	3
	(c)	Draw the crystal field splitting (d-orbital) diagram for [Ti(OH) ₆] ³⁺ and calculate the	
		CFSE. 4+1	=5
10.	(a)	What do you mean by common ion effect?	2
	(b)	How much KAl(SO ₄).12H ₂ O could be formed by 100 g of K ₂ SO ₄ , 100 g of	
		$Al_2(SO_4)_3$ and 100 g of water?	
		(At. wt. H = 1.0 ; O = 16.0 ; S = 32.0 ; K = 39.0 ; Al = 27.0)	4
	(c)	Write the electronic configuration of an element with atomic number 61.	2
	(d)	Why is SO_2 a gas and $\mathrm{H}_2\mathrm{O}$ a liquid ?	2