No. of Printed Pages: 2

BASE-003

B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination

June, 2015

00206

BASE-003: HIGH SPEED AERODYNAMICS

Tim	ne: 3 nours Maximum Marks	Maximum Marks : 70	
Not	te : Attempt any seven questions. Use of scien calculator, steam table and normal shock table permitted.	-	
1.	Make a comparative study of 2D and 3D shock wave/boundary layer interaction.	10	
2.	Explain the Mach number independence principle with respect to hypersonic flows.	10	
3.	Derive the governing equations for viscous flow.	10	
4.	What are the different rarefied gas dynamics flow regimes? How does Knudsen number influence these flow regimes?	10	
5.	Explain in detail the Thin-Shock layer and High-Temperature flows in hypersonic flows.	10	

6.	In a hypersonic wind tunnel, the flow Mach number is 15 and operating pressure is 2 atm. If the flow encounters an expansion corner of 8°, calculate the Mach number after the expansion and pressure. Assume that Mach number is very large.	10
7.	Contrast Supersonic and Hypersonic flow with the help of neat sketches. Use the example of supersonic and hypersonic flow over a wedge.	10
8.	(a) What is rarefied gas dynamics? Explain in detail.	5
	(b) Explain the gas surface interaction in rarefied flow regimes.	5
9.	Derive the hypersonic small disturbance equation.	10