No. of Printed Pages: 3

BAS-023

B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination June, 2015

00196

BAS-023 : AIRCRAFT DESIGN / LAUNCH VEHICLE / ROCKET DESIGN

Time: 3 hours

Maximum Marks: 70

Note: Attempt any **seven** questions. All questions carry equal marks. Use of scientific calculator is permitted.

- 1. A light UAV is to be designed for carrying an instrument/equipment load of 15 kgs. Its maximum velocity is 75 kmph. A pusher type piston-prop weighing 4.5 kgs capable of delivering 14 IHP is readily available.
 - (a) Work out gross weight for an endurance of 4 hrs.
 - (b) Carry out weight breakdown analysis.
 - (c) Prepare preliminary design of the wing.
 - (d) Work out major dimensions.
 - (e) Prepare a 3-view drawing.

Be reasonable to assume data required with justification.

10

2.	(a)	Make sketches/ features o			pare th	_	
		Which of its own w		is superi	or to the	e other in	5
	(b)	Compare propulsion and NAL use of skettwo airpla	n aspects designed etches/dia	of HAL SARAS	built . airplar	Avro-748 ie. Make	5
		two an pie	ines.				Э
3.	Explain the role of aircraft mock-up in the design and development of a new airplane. Illustrate with emphasis on structural arrangement, layout and systems deployment.						10
4 .	the	lain with aerodynan supersonic	ics, struc	ctures an	d propu	lsion of	
	(a).	Which were its st		al/enginee its?	ering	factors	5
	(b)	What force	ed Concor	de to reti	re from	service ?	5
5.	on a	t are the an airplar trate each isting/past	ne (both of these	civil ar with ske	nd mili tches/di	tary) ?	
	then						10

6.	Bring out your choice of the location of the wing					
	of an airplane from the following:					
	(a) High wing					
	(b) Low wing					
	(c) Mid wing					
	Design for a commercial, long range Jetliner. Argue on the basis of aerodynamics, structures, propulsion and other considerations. Make use of sketches, diagrams and plots to support your choice.					
7.	Design a preliminary 3-view layout for a light UAV for a V _{max} of 90 kmph, W _{gross} of 125 kg and weight of air-borne equipment is 35 kg. A pusher type piston engine of 22 IHP weighing 8.5 kg is readily available. Keep the C _D as 0.025. Select suitable airfoil section and wing geometry for unmanned airplane. Assume missing data and follow proper design procedure for this problem.					
8.	(a) Differentiate between tricycle and tail wheel configurations.	5				
	(b) What are the advantages of lower taper ratio? Explain with a neat sketch.	5				
9.	What is the effect of the following in the performance of an airfoil: $5\times2=10$					
	(a) Thickness to chord ratio					
	(b) Maximum thickness					
	(c) Location of maximum thickness					
	(d) Leading edge radius					
	(e) Location of maximum camber					