No. of Printed Pages: 4

BAS-013

B.Tech. AEROSPACE ENGINEERING (BTAE)

Term-End Examination

00296

June, 2015

BAS-013: PROPULSION - I

Time: 3 hours

Maximum Marks: 70

Note: Attempt any **five** questions. Each question carries equal marks. Use of scientific calculator is permitted.

1. Compare Otto, Diesel and Dual cycles for the

$$4 \times 3 \frac{1}{2} = 14$$

- (a) same compression ratio and heat input
- (b) same maximum pressure and heat input
- (c) same maximum pressure and temperature
- (d) same maximum pressure and work output

2. A turbojet engine consumes air at the rate of 60.2 kg/s when flying at a speed of 1000 km/hr. Calculate:

14

- (a) Exit velocity of the jet when the enthalpy change for the nozzle is 230 kJ/kg and velocity coefficient is 0.96
- (b) Fuel flow rate in kg/s when air-fuel ratio is 70:1
- (c) Thrust specific fuel consumption
- (d) Thermal efficiency of the plant, if the combustion efficiency is 92% and calorific value of the fuel used is 42,000 kJ/kg
- (e) Propulsive power
- (f) Propulsive efficiency
- (g) Overall efficiency
- 3. State the relative advantages and limitations of the following: $4 \times 3 \frac{1}{2} = 14$
 - (a) Battery and Magneto ignition system
 - (b) Splash and Dry sump lubrication system
 - (c) Propeller and Turboprop engine
 - (d) Air cooling and Steam cooling

4.	(a)	equation.	7
	(b)	Explain Kirchhoff's Law of Radiation.	7
5.	(a)	Briefly describe the working principle of Ramjet engine with a neat sketch.	7
	(b)	A simple jet carburetor is required to supply 5 kg of air and 0.5 kg of fuel per minute. The fuel specific gravity is 0.75 . The air is initially at 1 bar and 300 K. Calculate the throat diameter of the choke for a flow velocity of 100 m/s. Velocity coefficient is 0.8 . If the pressure drop across the fuel metering orifice is 0.80 that of the choke, calculate orifice diameter assuming, $C_{\rm df} = 0.60$ and	
		$\gamma = 1.4$, where the symbols have their usual meaning.	7
6.	(a)	Explain the combustion process of an SI engine.	7
	'(b)	Derive the expression for calculating mean effective pressure. List the parameter by which performance of an engine is	-
ı.t		evaluated.	7

- 7. Write short notes on any **four** of the following: $4 \times 3 \frac{1}{2} = 14$
 - (a) Overall heat transfer coefficient
 - (b) Black body
 - (c) Four-stroke CI engine
 - (d) Two-stroke SI engine
 - (e) Lubricants and Additives