No. of Printed Pages: 3

BNA-011

B.Sc. (NAUTICAL SCIENCE)

Term-End Examination

00035

June, 2015

BNA-011: APPLIED MATHEMATICS

Time: 2 hours

Maximum Marks: 70

Note: Attempt any **five** questions. Use of scientific calculator is allowed.

- 1. (a) If $\overrightarrow{a} = i + j$ and $\overrightarrow{b} = j k$, find the angle between $(\overrightarrow{a} + \overrightarrow{b})$ and $(\overrightarrow{a} \overrightarrow{b})$.
 - (b) If the vectors $\hat{i} + x\hat{j} 2\hat{k}$ and $x\hat{i} + 3\hat{j} 4\hat{k}$ are mutually perpendicular, then find 'x'.
 - (c) By using Simpson's $1/3^{rd}$ Rule, evaluate $\int_{0}^{2} (1 + x^{4}) dx$ dividing [0, 2] in 4 equal sub-intervals.

7

3

- 2. (a) The chances of X, Y, Z becoming managers of a certain company are 4:2:3. The probabilities that bonus scheme will be introduced, if X, Y, Z become managers are 0.3, 0.5 and 0.8 respectively. If the bonus scheme is introduced, what is the probability that X is appointed as the manager?
 - (b) The following table gives age of the cars of a certain make and annual maintenance costs. Obtain Regression equation for costs related to age:

Age of cars (in years) 2 4 6 8 Maintenance cost (in \neq) 10 20 25 30

7

7

7

- 3. (a) If $x = a \cos^3 \theta$ and $y = a \sin^3 \theta$, find $\frac{dy}{dx}$ at $\theta = \frac{\pi}{3}$.
 - (b) If $y = \log(\log 2x)$, then show that:

$$x\frac{d^2y}{dx^2} + \frac{dy}{dx} + x\left(\frac{dy}{dx}\right)^2 = 0$$

- 4. (a) Evaluate $\int \frac{e^x (1+x)}{\cos^2 (x \cdot e^x)} dx.$
 - (b) Using Integration, find the area of region bounded by the curve xy = 3, x-axis and the lines x = 1, x = 4.
- 5. (a) In a spherical triangle PQR, $P = 57^{\circ} 30.5'$, $Q = 95^{\circ} 17'$ and $R = 70^{\circ} 11'$. Calculate the side p.
 - (b) In spherical triangle NBC, $N=40^{\circ}$ 44', $n=36^{\circ}$ 13' and $C=90^{\circ}$. Find the sides b, c and angle B.
- 6. (a) Find the equation of ellipse, if x-axis and y-axis are its axes and whose foci are $(\pm 1,0)$ and eccentricity is $\frac{1}{\sqrt{3}}$.
 - (b) Find the equation of circle with centre (3, -1) and which cuts off an intercept of 6 units on the line 2x 5y + 18 = 0.