MCA (Revised)

Term-End Examination
09603
June, 2015

MCSE-004 : NUMERICAL AND STATISTICAL COMPUTING

Time: 3 hours
Maximum Marks : 100
Note: Question number 1 is compulsory. Attempt any three questions from the rest. Use of calculators is allowed.

1. (a) Show that $a(b-c) \neq a b-a c$, where $\mathrm{a}=0.5555 \times 10^{1}, \mathrm{~b}=0.4545 \times 10^{1}$ and $\mathrm{c}=0.4535 \times 10^{1}$.

Use 4 -digit precision floating point and significant digit rounded off.
(b) Solve the following linear system of equations using Gauss Elimination method with partial pivoting :

$$
\begin{aligned}
& x_{1}+x_{2}+x_{3}=3 \\
& 4 x_{1}+3 x_{2}+4 x_{3}=11 \\
& 9 x_{1}+3 x_{2}+4 x_{3}=16
\end{aligned}
$$

(c) Estimate the missing term in the following data using forward differences :

$\mathrm{x}:$	1	2	3	4	5
$\mathrm{f}(\mathrm{x}):$	3	7	$?$	21	31

(d) Evaluate the integral

using Simpson's $1 / 3$ rule with $h=0.5$.
(e) A filling machine is set to pour 952 ml of oil into bottles. The amount to fill is normally distributed with a mean of 952 ml and a standard deviation of 4 ml . Use the standard normal table to find the probability that the bottle contains oil between 952 and 956 ml .
(f) What is the utility of residual plots? What is the disadvantage of residual plots?
(g) If $\pi=3 \cdot 14159265$, then find out to how many decimal places the approximate value of $22 / 7$ is accurate.
(h) Three bags of same type have the following balls :

Bag 1: 2 black 1 white
Bag 2: 1 black 2 white
Bag 3: 2 black 2 white

One of the bags is selected and one ball is drawn. It turns out to be white. What is the probability of drawing a white ball again, the first one not having been returned?
(i) Define Poisson Distribution.

2
2. (a) Find the smallest positive root of the quadratic equation

$$
x^{2}-8 x+15=0
$$

using Newton-Raphson method.
(b) Find the Lagrange interpolating polynomial of degree 2 approximating the function $y=\ln \mathrm{x}$. Hence determine the value of $\ln 2 \cdot 7$. Also find the error.

x	2	2.5	3.0
$\mathrm{y}=\ln \mathrm{x}$	0.69315	0.91629	1.09861

(c) What are the sources of errors in numerical data and processing ? How does error measure accuracy?
3. (a) Evaluate the integral $I=\int_{0}^{1} \frac{d x}{1+x}$
using Gauss-Legendre three-point formula.
(b) Solve the initial value problem $u^{\prime}=-2 t u^{2}$ with $u(0)=1$ and $h=0.2$ on the interval [0, 1]. Use the fourth order classical Runge-Kutta method.
(c) Evaluate

$$
\int_{1}^{6}[2+\sin (2 \sqrt{x})] d x
$$

using Composite Simpson's rule with 5 points.
4. (a) Calculate the correlation coefficient for the following heights (in inches) of fathers (X) and their sons (Y) :

$\mathrm{X}:$	65	66	67	67	68	69	70	72
$\mathrm{Y}:$	67	68	65	68	72	72	69	71

Obtain the equations of lines of regression. Also estimate the value of X for $\mathrm{Y}=70$.
(b) A manufacturer of cotter pins knows that 5% of his product is defective. If he sells cotter pins in boxes of 100 and guarantees that not more than 10 pins will be defective, what is the approximate probability that a box will fail to meet the guaranteed quality?
5. (a) What do you mean by pseudo-random number generation? What is the practical advantage of the concept of random number generation?
(b) For the data given in the table, compute R and R^{2}, where R denotes $\mathrm{S}_{\mathrm{xy}} / \sqrt{\mathrm{S}_{\mathrm{xx}} \mathrm{S}_{\mathrm{yy}}}$.

Sample No (i)	12	21	15	1	24
X_{i}	0.96	$1 \cdot 28$	$1 \cdot 65$	$1 \cdot 84$	$2 \cdot 35$
Y_{i}	138	160	178	190	210
$\hat{\mathrm{y}}_{\mathrm{i}}$	138				
$\hat{\mathrm{e}}_{\mathrm{i}}$	0				

Note: $\hat{y}_{i}=90+50 X_{i}$ and $\hat{e}_{i}=Y_{i}-\hat{y}_{i}$, for calculating \hat{y}_{i} and \hat{e}_{i}.
(c) If a bank receives on an average $\lambda=6 \mathrm{bad}$ cheques per day, what is the probability that it will receive 4 bad cheques on any given day, where λ denotes the average arrival rate per day?

