No. of Printed Pages : 3

MCS-033

MCA (Revised) Term-End Examination

MCS-033 : ADVANCED DISCRETE MATHEMATICS

Time : 2 hours

Maximum Marks : 50

- Note: Question number 1 is compulsory. Attempt any three questions from the rest.
- 1. (a) Explain divide and conquer relations with an example.
 - (b) Find the order and degree of each of the following recurrences :
 - (i) $a_n = a_{n-1} + a_{n-2}$
 - (ii) $a_n = a_{n-1} + n$
 - (iii) $a_n = n a_{n-1} + (-1)^n$
 - (iv) $a_n = a_n a_0 + a_{n-1} + \dots + a_0 a_n (n \ge 2)$
 - (c) Explain generating functions with suitable examples.

MCS-033

P.T.O.

4

4

4

	(d)	Define Graph and Subgraph. Give an example of a subgraph H of a graph G with $\delta(G) < \delta(H)$ and $\Delta(H) < \Delta(G)$.	4
	(e)	Define Tree and Bipartite graph. Is tree a bipartite graph ? Justify your answer.	4
2.	(a)	What are Hamiltonian graphs ? Construct	
		a non-Hamiltonian graph on 5-vertices.	5
	(b)	Show that K ₅ is not planar.	5
3.	(a)	What is the chromatic number of the following:	
		(i) A tree with at least two vertices	2
		(ii) An even cycle C_{2n} , $n \ge 2$	2
		(iii) An odd cycle C_{2n+1} , $n \ge 1$	2
	(b)	State and prove Euler's formula.	4
4.	(a)	Find the sum of the series given as, $\sum_{k=0}^{\infty} \frac{(k+1)^2}{\lfloor k} = \frac{1^2}{\lfloor 0} + \frac{2^2}{\lfloor 1} + \dots + \frac{(n+1)^2}{\lfloor n} + \dots$ using exponential generating functions.	,
	(b)	How many integer solutions are there to $a_1 + a_2 + a_3 + a_4 + a_5 = 28$, where $a_k > k$ for	

MCS-033

2

5

each k, where $1 \le k \le 5$?

5. (a)

Solve the recurrence $a_n = 4a_{n-2}$, where

- (i) $a_0 = 4, a_1 = 6$ 2
- (ii) $a_0 = 6, a_2 = 20$ 2
- (iii) $a_1 = 6, a_2 = 20$

(b)

Using an appropriate substitution, solve the recurrence given by,

$$\mathbf{y}_n = \left(\frac{n-1}{n}\right)\mathbf{y}_{n-1} + \frac{1}{n}, \quad n \ge 1,$$

where $y_0 = 5$.

2

4