No. of Printed Pages: 4

MCS-031

P.T.O.

MCA (Revised)

Term-End Examination

10423

June, 2015

MCS-031 : DESIGN AND ANALYSIS OF ALGORITHMS

Time : 3 hours

MCS-031

Maximum Marks : 100

Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1.	(a)	(i) Solve the recurrence equation					
		$T(n) = 2.T(n/4) + n^3$ for $n > 1$ and $T(1) = 1$.					
		(ii)	Obtain the asymptotic upper bound for $f(n) = (6n^2 - 5n + 2)^2$.	4+4			
	(b)	A binomial coefficient is defined by the following recurrence relation :					
		C(n,	(0) = 1 and $C(n, n) = 1$ for $n > 0$.				
		C (n ,	C(n, k) = C(n - 1, k) + C(n - 1, k - 1) for				
		n > k > 0.					
		(i)	Draw the recursion tree for C(6, 4).	4			
	•	(ii)	Write a recursive function to generate $C(n, k)$.	4			
		(iii)	Give an algorithm based on Dynamic Programming to solve C(n, k).	4			
		(iv)	Compare the time and space requirements of the algorithm in part				
			(iii).	4			

1

	(c)	(i)	You are given currency of denominations {500, 100, 50, 20, 10, 5}. Give a greedy algorithm to obtain the minimum number of denomination for any amount which is a multiple of 5.	6
		(ii)	Write a procedure to merge two sorted arrays. Analyze the running time of your algorithm.	6
	(d)	Is t conv	he following sequence a heap ? If not, vert it into a heap.	4
			< 10, 5, 3, 8, 6, 1, 7 >	
2.	(a)	(i)	Write an algorithm to find the i^{th} smallest element in $O(n)$ time.	6
		(ii)	Illustrate the working of your algorithm on the input < 1, 5, 8, 6, 13, 4, 3 > to find the 4 th smallest element.	6 4 6 4 6
	(b)	(i)	Define a BFS tree. Give the breadth first traversal for the undirected graph given below, starting from vertex 'a'.	6
	•		a b e d c	

(ii) Give any two applications of Depth first search.

MCS-031

P.T.O.

4

- **3.** (a) (i) Explain Dijkstra's shortest path algorithm.
 - (ii) Find the shortest path in the following graph represented by adjacency matrix, from vertex 'a'.

	a	b	С	d	е
a	-	1	15	-	5
b ·	1	-	2	—	10
с	15	2	-	8	6
d	-	-	8	_	3
е	5	10	6	3	-

- (b)
- (i) Explain the principle of greedy algorithm.
- (ii) Explain Prim's algorithm for Minimum Spanning Tree, and obtain the MST for the graph in question 3 (a) (ii).
- (a) (i) Define Finite Automata and Regular Expression.
 - (ii) Write Regular Expression for the following :
 - (1) $L = (01)^n, n \ge 1.$
 - (2) Strings that start with '1' and end with '0'.

MCS-031

4.

3

P.T.O.

6

4

4

6

4

6

- (b) Obtain the CFG for the following :
- 10

6

5

9

(i) Strings of matching parenthesis.

- (ii) Expression of the form E = (E + E) * E.
 The expression contains : parenthesis, operators : +, -, * and /.
- 5. (a) Explain the class-P, NP and NP-complete problems.
 - (b) (i) What is undecidability ? Give an example for an undecidable problem.
 - (ii) Design a polynomial time reduction from the vertex cover problem to the clique problem.

MCS-031