MCA (Revised) / BCA (Revised)
Term-End Examination
June, 2015

MCS-013 : DISCRETE MATHEMATICS

Time: 2 hours
Maximum Marks : 50
Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1. (a) Write down the truth table of

$$
\mathrm{p} \rightarrow \mathrm{q} \wedge \sim \mathrm{r} \leftrightarrow \mathrm{r} \oplus \mathrm{q} .
$$

Also explain whether it is a tautology or not.
(b) Show that $\sqrt{5}$ is irrational.
(c) Give the geometric representation of $R \times\{2\}$.
(d) Find the f inverse of the function

$$
f: f(x)=x^{3}-3 .
$$

(e) Present a direct proof of the statement : "Square of an odd integer is odd."
(f) How many permutations are there for the word "UNIVERSITY"?
2. (a) (i) Check whether

$$
\begin{aligned}
& (A \cup B) \cap C=A \cup(B \cap C) \text { or not, } \\
& \text { using Venn Diagram. }
\end{aligned}
$$

(ii) Find the dual of $\mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})$. 2
(b) Prove that $C(n, r)=C(n, n-r)$, for $0 \leq r \leq n, n \in N$.
3. (a) State and prove Addition Theorem of Probability.
(b) Show that in any group of 30 people, we can always find 5 people who were born on the same day of the week.
(c) State Pigeonhole principle. Also give an example of its application.
4. (a) What is the probability that a number between 1 and 200 is divisible by neither $2,3,5$ nor 7 ?
(b) In how many ways can 20 students be grouped into 3 groups ?
(c) In how many ways can r distinct objects be distributed into 6 different boxes with at least two boxes empty?
5. (a) Give an example of a compound proposition that is neither a tautology nor a contradiction. 2
(b) Show that $2^{\mathrm{n}}>\mathrm{n}^{3}$ for $\mathrm{n} \geq 10$. 5
(c) Draw the logic circuit for the following boolean expression :

$$
x \cdot y+x \cdot y^{\prime}+x^{\prime} \cdot y .
$$

