No. of Printed Pages: 3

MCS-013

MCA (Revised) / BCA (Revised) Term-End Examination June, 2015

MCS-013 : DISCRETE MATHEMATICS

Time : 2 hours

U5293

Maximum Marks : 50

Note: Question number 1 is compulsory. Attempt any three questions from the rest.

1. (a)	Write down the truth table of $p \rightarrow q \land \sim r \leftrightarrow r \oplus q$.	
· ·	Also explain whether it is a tautology or not.	5
(b)	Show that $\sqrt{5}$ is irrational.	4
(c)	Give the geometric representation of $\mathbf{R} \times \{2\}$.	3
(d)	Find the f inverse of the function	
	$\mathbf{f}:\mathbf{f}(\mathbf{x})=\mathbf{x}^3-3.$	3
(e)	Present a <i>direct proof</i> of the statement : "Square of an odd integer is odd."	3
(f)	How many permutations are there for the word "UNIVERSITY"?	2
MCS-013	1 P.	T.O.

(i) Check whether 2. (a) $(A \cup B) \cap C = A \cup (B \cap C)$ or not, using Venn Diagram. 3 Find the dual of $A \cup (B \cup C)$. 2 (ii) Prove that C(n, r) = C(n, n - r), for **(b)** 5 $0 \leq r \leq n, n \in \mathbb{N}$. State and prove Addition Theorem of 3. (a) 5 Probability. Show that in any group of 30 people, we (b) can always find 5 people who were born on 3 the same day of the week. State Pigeonhole principle. Also give an (c) 2 example of its application. 4. (a) What is the probability that a number between 1 and 200 is divisible by neither 2, 3, 5 nor 7?3 In how many ways can 20 students be (**b**) 3 grouped into 3 groups? (c) In how many ways can r distinct objects be distributed into 6 different boxes with at least two boxes empty? 4 2 MCS-013

- 5. (a) Give an example of a compound proposition that is neither a tautology nor a contradiction.
 - (b) Show that $2^n > n^3$ for $n \ge 10$.
 - (c) Draw the logic circuit for the following boolean expression :

 $\mathbf{x} \cdot \mathbf{y} + \mathbf{x} \cdot \mathbf{y}' + \mathbf{x}' \cdot \mathbf{y}$.

2 5

3