No. of Printed Pages: 3

BCS-042

BACHELOR OF COMPUTER APPLICATIONS (Revised)

□2□63 Term-End Examination June, 2015

BCS-042: INTRODUCTION TO ALGORITHM DESIGN

Time: 2 hours Maximum Marks: 50

Note: Question number 1 is compulsory. Answer any three questions from the rest.

- 1. (a) Write an algorithm to compute an by left to right binary exponentiation method and illustrate through an example.
 - (b) Do the complexity analysis of the above algorithm.
 - (c) Put the following classes of algorithm in the increasing order of growth: 2 $O(2^n), O(n \log_2 n), O(\log_2 n), O(n).$
 - (d) Using the definition of Big Oh, show that $4 \cdot 6n^2 + 20 \cdot n = O(n^3)$.

(e) What is the difference between a graph and a tree? Draw four spanning trees of the following graph:

4

10

6

2. Apply Kruskal's algorithm to find a minimum cost spanning tree of the following graph:

3. (a) Apply the Merge Sort algorithm to sort the following list:

15 5 8 7 4 20 25

(b) Describe any two methods of solving the recurrence relation.

- 4. Explain the following terms with examples: 10
 - (a) Complete graph
 - (b) Combinatorial problems
 - (c) Branch and bound technique
 - (d) Loose bound
 - (e) Average case
- 5. (a) Find the optimal solution to the knapsack instance (fractional):

$$\begin{split} n &= 5, \ M = 10 \\ (P_1, P_2, P_3, P_4, P_5) &= (14, 24, 32, 18, 20) \\ (W_1, W_2, W_3, W_4, W_5) &= (7, 8, 4, 3, 5) \end{split}$$

(b) What is a single source shortest path problem? What are the proposed solutions?

4

6