BACHELOR OF COMPUTER APPLICATIONS
 (Revised)

ロ2ロ63 Term-End Examination
June, 2015

BCS-042 : INTRODUCTION TO ALGORITHM DESIGN

Time : 2 hours
Maximum Marks : 50
Note: Question number 1 is compulsory. Answer any three questions from the rest.

1. (a) Write an algorithm to compute a^{n} by left to right binary exponentiation method and illustrate through an example.
(b) Do the complexity analysis of the above algorithm.
(c) Put the following classes of algorithm in the increasing order of growth :

$$
O\left(2^{n}\right), O\left(n \log _{2} n\right), O\left(\log _{2} n\right), O(n)
$$

(d) Using the definition of Big Oh , show that 4

$$
6 n^{2}+20 n=O\left(n^{3}\right)
$$

(e) What is the difference between a graph and a tree? Draw four spanning trees of the following graph :

2. Apply Kruskal's algorithm to find a minimum cost spanning tree of the following graph :

3. (a) Apply the Merge Sort algorithm to sort the
following list :

$$
\begin{array}{lllllll}
15 & 5 & 8 & 7 & 4 & 20 & 25
\end{array}
$$

(b) Describe any two methods of solving the recurrence relation.
4. Explain the following terms with examples :
(a) Complete graph
(b) Combinatorial problems
(c) Branch and bound technique
(d) Loose bound
(e) Average case
5. (a) Find the optimal solution to the knapsack instance (fractional) :

$$
\begin{aligned}
& \quad \mathrm{n}=5, \mathrm{M}=10 \\
& \left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}, \mathrm{P}_{5}\right)=(14,24,32,18,20) \\
& \left(\mathrm{W}_{1}, W_{2}, W_{3}, W_{4}, W_{5}\right)=(7,8,4,3,5)
\end{aligned}
$$

(b) What is a single source shortest path problem? What are the proposed solutions?

