No. of Printed Pages: 5

MINI-019

M.Tech. IN ADVANCED INFORMATION TECHNOLOGY - NETWORKING AND TELECOMMUNICATION (MTECHTC)

Term-End Examination

00013

June, 2015

MINI-019: STATISTICAL SIGNAL ANALYSIS

Time: 3 hours

Maximum Marks: 100

Note:

- (i) Section I is compulsory.
- (ii) In Section II, solve any five questions.
- (iii) Assume suitable data wherever required.
- (iv) Draw suitable sketches wherever required.
- (v) Use of calculator is allowed.

SECTION I

- 1. Answer the following short answer questions: $10 \times 3 = 30$
 - (i) What is if and only if condition for two sets A and B to be equal?
 - (ii) When is an experiment called as a random experiment? Give any two examples of random experiment.

- (iii) Find the sample space S for the experiment of tossing a coin 4 times.
- (iv) Consider an event in two parallel paths (P1 and P2) between two points A and B. P1 has two switches and P2 has one switch. Express the closed path event between the points A and B in terms of switches closed conditions.
- (v) Two random variables X and Y are called independent if their joint cumulative distribution functions (cdf's) equals to what?
- (vi) State the central limit theorem. Brief its significance in probability theory.
- (vii) What is the difference between Markov process and Markov chain?
- (viii) If the input to an LTI system is series of time shifted versions of impulse, what should be the output sequence?
- (ix) Describe the principle of operation of maximum likelihood estimator.
- (x) Why does Shannon's sampling theorem lead to aliasing? How can this be avoided?

SECTION II

Attempt any **five** questions from this section:

- 2. Answer the following with mathematical equalities and examples: 7+7
 - (i) Stochastic continuity, differentiation and integration of a random process.
 - (ii) Autocorrelation, cross-correlation, white noise.
- 3. (a) State the elementary properties of probability.6
 - (b) A committee of 5 persons is to be selected randomly from a group of 5 men and 10 women. 4+4
 - (i) Find the probability that the committee consists of 2 men and 3 women.
 - (ii) Find the probability that the committee consists of all women.
- 4. (a) Derive a two state Markov discrete process.

 How is it used in digital communications?
 - (b) For the following transition matrix, find the steady-state probabilities: 7

$$T = \begin{bmatrix} 0.9 & 0.1 \\ 0.05 & 0.85 \end{bmatrix}$$

- 5. Given a continuous random variable X with mean μ_x , variance σ_x^2 and pdf $f_x(x)$, where $f_x(x) = 0$ for x < 0. For any a > 0,
 - (i) Show that $P(X \ge a) \le \frac{\mu_X}{a}$ (Markov inequality)
 - (ii) Show that $P(|X \mu_x| \ge a) \le \frac{\sigma_x^2}{a^2}$ (Chebyshev inequality)
- 6. (a) Two manufacturing plants produce similar parts. Plant 1 produces 1,000 parts, 100 of which are defective. Plant 2 produces 2,000 parts, 150 of which are defective. A part is selected at random and found to be defective. What is the probability that it came from plant 1?
 - (b) A lot of 100 semi-conductor chips contains 20 chips that are defective. Two chips are selected at random, without replacement, from the lot. $3\times3=9$
 - (i) What is the probability that the first one selected is defective?
 - (ii) What is the probability that the second one selected is defective given that the first one was defective?
 - (iii) What is the probability that both are defective?

5

7. The joint pdf of a bivariate random variables (X, Y) is given by

$$f_{x,y}(x,y) = \begin{cases} ke^{-(ax+by)} \ x > 0, \ y > 0 \\ 0 \qquad \qquad otherwise \end{cases}$$

where, a and b are positive constants and k is a constant.

- (i) Determine the value of k. 4
- (ii) Are X and Y independent?
- (iii) Find the marginal pdf's $f_x(x)$ and $f_y(y)$. 6
- 8. Consider a discrete-parameter random process $X(n) = \{X_n, n \ge 1\}$ where the X(n) are random variables with common cdf $f_x(x)$, mean μ , and variance σ^2 .
 - (i) Find the joint cdf of X(n).
 - (ii) Find the mean of X(n).
 - (iii) Find the autocorrelation function $R_x(n, m)$ $R_d(n, m)$ of X(n).
 - (iv) Find the auto covariance function $K_x(n, m)$ of X(n).