M.Tech. IN ADVANCED INFORMATION TECHNOLOGY - NETWORKING AND TELECOMMUNICATION (MTECHTC)

Term-End Examination
00013
June, 2015

MINI-019 : STATISTICAL SIGNAL ANALYSIS

Time : 3 hours
Maximum Marks : 100
Note:
(i) Section I is compulsory.
(ii) In Section II, solve any five questions.
(iii) Assume suitable data wherever required.
(iv) Draw suitable sketches wherever required.
(v) Use of calculator is allowed.

SECTION I

1. Answer the following short answer questions:
(i) What is if and only if condition for two sets A and B to be equal?
(ii) When is an experiment called as a random experiment ? Give any two examples of random experiment.
(iii) Find the sample space S for the experiment of tossing a coin 4 times.
(iv) Consider an event in two parallel paths (P1 and P2) between two points A and B. P1 has two switches and P2 has one switch. Express the closed path event between the points A and B in terms of switches closed conditions.
(v) Two random variables X and Y are called independent if their joint cumulative distribution functions (cdfs) equals to what?
(vi) State the central limit theorem. Brief its significance in probability theory.
(vii) What is the difference between Markov process and Markov chain?
(viii) If the input to an LTI system is series of time shifted versions of impulse, what should be the output sequence?
(ix) Describe the principle of operation of maximum likelihood estimator.
(x) Why does Shannon's sampling theorem lead to aliasing? How can this be avoided?

SECTION II

Attempt any five questions from this section :
2. Answer the following with mathematical equalities and examples:
(i) Stochastic continuity, differentiation and integration of a random process.
(ii) Autocorrelation, cross-correlation, white noise.
3. (a) State the elementary properties of probability.
(b) A committee of 5 persons is to be selected randomly from a group of 5 men and 10 women.
(i) Find the probability that the committee consists of 2 men and 3 women.
(ii) Find the probability that the committee consists of all women.
4. (a) Derive a two state Markov discrete process. How is it used in digital communications?
(b) For the following transition matrix, find the steady-state probabilities :

7

$$
\mathrm{T}=\left[\begin{array}{cc}
0.9 & 0.1 \\
0.05 & 0.85
\end{array}\right]
$$

5. Given a continuous random variable X with mean μ_{x}, variance σ_{x}^{2} and pdf $f_{x}(x)$, where $f_{x}(x)=0$ for $x<0$. For any $a>0$,
(i) Show that $P(X \geq a) \leq \frac{\mu_{x}}{a} \quad$ (Markov inequality)
(ii) Show that $P\left(\left|X-\mu_{x}\right| \geq a\right) \leq \frac{\sigma_{x}^{2}}{a^{2}}$ (Chebyshev inequality)
6. (a) Two manufacturing plants produce similar parts. Plant 1 produces 1,000 parts, 100 of which are defective. Plant 2 produces 2,000 parts, 150 of which are defective. A part is selected at random and found to be defective. What is the probability that it came from plant 1 ?
(b) A lot of 100 semi-conductor chips contains 20 chips that are defective. Two chips are selected at random, without replacement, from the lot. $3 \times 3=9$
(i) What is the probability that the first one selected is defective?
(ii) What is the probability that the second one selected is defective given that the first one was defective?
(iii) What is the probability that both are defective?
7. The joint pdf of a bivariate random variables $(\mathrm{X}, \mathrm{Y}$) is given by

$$
f_{x, y}(x, y)= \begin{cases}k e^{-(a x+b y)} & x>0, y>0 \\ 0 & \text { otherwise }\end{cases}
$$

where, a and b are positive constants and k is a constant.
(i) Determine the value of k.

(ii) Are X and Y independent?
(iii) Find the marginal pdfs $f_{x}(x)$ and $f_{y}(y)$.
8. Consider a discrete-parameter random process $X(n)=\left\{X_{n}, n \geq 1\right\}$ where the $X(n)$ are random variables with common edf $f_{x}(x)$, mean μ, and variance σ^{2}.
(i) Find the joint cdf of $\mathrm{X}(\mathrm{n})$
(ii) Find the mean of $X(n)$.
(iii) Find the autocorrelation function $R_{x}(n, m)$ $R_{d}(n, m)$ of $X(n)$.
(iv) Find the auto covariance function $\mathrm{K}_{\mathrm{x}}(\mathrm{n}, \mathrm{m})$ of $X(n)$.

