M.Tech. IN ADVANCED INFORMATION TECHNOLOGY - SOFTWARE TECHNOLOGY (MTECHST)

Term-End Examination
June, 2015

01023

MIN-004 : MATHEMATICAL FOUNDATION AND ALGORITHM DESIGN

Maximum Marks : 100

Note :
(i) Section I is compulsory and carries 30 marks. Answer all the questions.
(ii) Section 11 carries 70 marks. Answer any five questions.
(iii) Assume suitable data wherever required.
(iv) Draw suitable sketches wherever required.
(v) Italicized figures to the right indicate maximum marks.

SECTION I

1. A Vegetable and Fruit Mall wants to organize its vegetables and fruit products in a combination of purchase pattern of customers. Solve the problem by suggesting appropriate data structures. Design necessary structure. 10+5

MIN-004
2. Write a recurrence relation for the following function and solve it by using recursion tree method. Also give its time complexity. 15 int fib (int n)
\{
if $(\mathrm{n}<2$)
return (n);
else return (fib (n-1) + fib (n-2));
)

SECTION II

3. A dictionary stores keywords and its meanings. Provide facility for adding new keywords, deleting keywords and updating values of any entry. Also provide facility to display whole data sorted in ascending/descending order. Also find how many maximum comparisons may be required for finding any keyword. Make use of appropriate data structures.
4. (a) How much time does insertion sort take to sort n-distinct items in the best case? State your answer in asymptotic notation.

(b) Prove that TSP problem is NP-Hard.

5. What is principle of optimality? The principle of optimality does not hold for every problem whose solution can be viewed as a result of sequence of decisions. Find the two problems for which principle of optimality does not hold. Explain why principle of optimality does not hold for these problems.
6. (a) Prove or disprove :

If $G=(V, E)$ is finite directed graph such that the out degree of each vertex is at least one, then there is a directed cycle in G.
(b) Suppose that you have a list L [1..n] representing the results of election so that $\mathrm{L}[\mathrm{i}]$ is the candidate voted for by person i , $\mathrm{i}=1 . . \mathrm{n}$. Design a linear algorithm to determine whether the candidate got majority of the votes, i.e. whether there exists a list element that occurs more than $\mathrm{n} / 2$ times in the list. Your algorithm should output a majority winner if one exists.
7. (a) Write an algorithm for deletion of element x from BST. Also comment on the time complexity.
(b) Compare NP-Complete and NP-Hard problems.
8. (a) A survey has been taken on methods of commuter travel. Each respondent was asked to check bus, train or automobile as a major method of travelling to work. More than one answer was permitted. The results reported were as follows : Bus - 30 people, train - 36 people, automobile -100 people, bus and train - 16 people, bus and automobile - 15 people, train and automobile - 20 people and all three methods - 5 people. How many people completed the survey form?
(b) Given the value of $p \rightarrow q$ is false, find the value of $(\rceil p \vee\rceil q) \rightarrow q$.
9. Use p : today is Monday
q : the grass is wet
r : the dish ran away with the spoon
Write an English statement that corresponds to each of the following :
(i) $\quad 7 \mathbf{r} \wedge q$
(ii) $\quad\urcorner \mathbf{q} \vee \mathbf{r}$
(iii) $7(p \vee q)$
(iv) $p \vee \nmid r$
$\mathrm{p} \rightarrow \mathrm{q}$

