No. of Printed Pages : 10

BECC–104

B. A. (HONS.) ECONOMICS (BAECH)

Term-End Examination

June, 2024

BECC-104 : MATHEMATICAL METHODS IN ECONOMICS—II

Time : 3 Hours Maximum Marks : 100

Note: Answer questions from each Section as directed.

Section-A

Note : Answer any two questions from this Section.

 $2 \times 20 = 40$

1. Given the production function :

$$\mathbf{Q} = \mathbf{A}\mathbf{L}^{\frac{1}{2}}\mathbf{K}^{\frac{1}{2}}$$

where : \mathbf{Q} is the total product

L is labour

K is capital

(a) Find the marginal product of two factors.

- (b) Show that the Euler's theorem is satisfied.
- (c) What is the nature of Returns to Scale ?
- 2. Given the national income model :

Y = C + 1000 + 1500C = 40 + 0.7 (Y - T)T = 100 + 0.4Y

Find the equilibrium income, consumption and taxes using Cramer's rule.

- 3. Explain the concept of comparative statics and briefly explain how it differs in a nonoptimization context from an optimization context.
- A price discriminating monopolist, sells his product in two markets whose demand functions are as follows :

Market 1 : $p_1 = 80 - 5q_1$

(where p_1 and q_1 are price charged and quantity sold in first market) Market 2 : $p_2 = 180 - 20q_2$

(where p_2 and q_2 are price charged and quantity sold in second market) Determine the output levels in both the markets, where monopolist maximizes his profit. What is the maximum profit ?

Section-B

Note : Answer any four questions from this Section.

 $4 \times 12 = 48$

- 5. (a) What is linear differential equation ? How is solution of linear differential equation obtained ?
 - (b) The price elasticity of demand of a commodity is given by $\frac{5p}{(p+3)(p-2)}$. Find demand function given that at p = 3, 6 units are demanded.

P. T. O.

[3]

- [4]
- 6. From the demand function

$$x = 800 - \frac{p_x^2}{5} + \frac{p_z}{60} + \frac{m}{10}$$

where $p_x = \text{price of good } x$

$$p_z = \text{price of good } z$$

$$m = \text{income}$$

find income and cross elasticity of demand when income is ₹ 500, $p_x = 10$ and $p_z = 15$.

- 7. Explain Envelope theorem in case of constrained optimization.
- 8. Solve the following differential equations :

(a)
$$x\sqrt{1+y^2} \, dx = y\sqrt{1+x^2} \, dy$$

(b)
$$\frac{dy}{dx} = x^2y + y$$

- 9. Explain compensated demand function and Shephard's lemma.
- 10. A firm produces two goods x and y. Due to a government quota, the firm must produce subject to constraint x + y = 42. The firm's cost function is $C(x, y) = 8x^2 xy + 12y^2$. What is the optimum quantity of x and y that should be produced ? Calculate using Lagrangian multiplier.

Section-C

Note : Answer both questions from this Section.

 $2 \times 6 = 12$

11. Write short notes on following :

- (a) Roy's identity
- (b) Multivariate function

12. Given
$$A = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$ and
 $C = \begin{bmatrix} -3 & 1 \\ 2 & 0 \end{bmatrix}$.

Prove that A(BC) = (AB)C.

BECC–104

बी. ए. (ऑनर्स) अर्थशास्त्र

(बी. ए. ई. सी. एच.)

सत्रांत परीक्षा

जून, 2024

बी. ई. सी. सी.-104 : अर्थशास्त्र में गणितीय

प्रविधियाँ—II

समय : 3 घण्टे

अधिकतम अंक : 100

नोट : प्रत्येक भाग से प्रश्नों के निर्देशानुसार उत्तर दीजिए।

भाग—क

नोट: इस भाग से कोई **दो** प्रश्न हल कीजिए। 2×20=40 1. एक उत्पादन फलन है:

$$\mathbf{Q} = \mathbf{A}\mathbf{L}^{\frac{1}{2}}\mathbf{K}^{\frac{1}{2}}$$

जहाँ : Q = कुल उत्पादन

L = श्रम और

(क)दोनों कारकों के सीमांत उत्पादन ज्ञात कीजिए। (ख)दर्शाइए कि यूलर के प्रमेय को सन्तुष्ट किया जा रहा है।

(ग) पैमाने के प्रतिफलों का स्वरूप क्या है ?

2. एक राष्ट्रोय आय प्रतिमान इस प्रकार है :

Y = C + 1000 + 1500C = 40 + 0.7 (Y - T)

T = 100 + 0.4 Y

क्रैमर का नियम प्रयोग कर साम्य स्तर पर आय, उपभोग और करों का आकलन कीजिए।

 तुलनात्मक स्थैतिको को संकल्पना की व्याख्या कीजिए। यह भी समझाइए कि एक गैर-इष्टतमीकरण सन्दर्भ में यह इष्टतमीकरण सन्दर्भ से किस प्रकार भिन्न होती है।

P. T. O.

- एक कीमत विभेदक एकाधिकारी दो बाजारों में अपना उत्पादन बेचता है जिनमें उसके समक्ष माँग वक्र इस प्रकार है :
 - बाजार 1 : $p_1 = 80 5q_1$ (जहाँ p_1 कीमत तथा q_1 इस बाजार में बेची गई मात्रा है।)
 - बाजार 2 : $p_2 = 180 20q_2$ (जहाँ p_2 कीमत तथा q_2 इस बाजार में बेची गई मात्रा है।)

दोनों बाजारों में बेचे गए वे उत्पादन स्तर ज्ञात कीजिए जिन पर एकाधिकारी अधिकतम लाभ कमाता है। वह अधिकतम लाभ कितना है ?

भाग—ख

नोट : इस भाग से कोई **चार** प्रश्न हल कीजिए। 4×12=48

 (क)रैखिक अवकल समीकरण क्या होता है ?
एक रैखिक अवकल समीकरण का हल कैसे ज्ञात करते हैं ? 6. एक माँग फलन है:

$$x = 800 - \frac{p_x^2}{5} + \frac{p_z}{60} + \frac{m}{10}$$

जहाँ: $p_x = a$ स्तु x की कीमत है
 $p_z = a$ स्तु z की कीमत है।
 $m =$ आय को दर्शा रहा है।
जहाँ आय ₹ 500, $p_x = 10$ तथा $p_z = 15$ वहाँ माँग
की तिर्यक लोच का मान आकलित कीजिए।

- संरोधाधीन इष्टतमीकरण के सन्दर्भ में परिव्यापन प्रमेय की व्याख्या कीजिए।
- 8. निम्नलिखित अवकल समीकरणों को हल कीजिए :

(क)
$$x\sqrt{1+y^2} dx = y\sqrt{1+x^2} dy$$

(ख) $\frac{dy}{dx} = x^2y + y$

9. क्षतिपूरित माँग फलन और शेफर्ड का उपप्रमेय समझाइए। 10. एक फर्म x तथा y दो वस्तुओं का उत्पादन करती है। सरकार द्वारा नियत कोटा नियम का पालन करते हुए उसे x + y = 42 रखना होता है। फर्म का लागत फलन $C(x, y) = 8x^2 - xy + 12y^2$ है। फर्म को xऔर y की किन इष्टतम मात्राओं का उत्पादन करना चाहिए ? लैग्रांज गुणक का प्रयोग कर आकलन कोजिए।

भाग—ग

नोट : इस भाग क दोनों प्रश्न हल कीजिए। 2×6=12 11. निम्नलिखित पर लघु टिप्पणियाँ लिखिए :

(क) रॉय की सर्वसमिका (ख) बहुचर फलन

12. दिया गया है : $A = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix}, B = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$ तथा $C = \begin{bmatrix} -3 & 1 \\ 2 & 0 \end{bmatrix}$ । सिद्ध कीजिए कि A(BC) = (AB)C |

BECC-104