Maximum Marks: 100

No. of Printed Pages: 3

Time: 3 Hours

MASTER OF COMPUTER APPLICATIONS (MCA) (REVISED)

Term-End Examination June, 2024

MCSE-011: PARALLEL COMPUTING

Note: Question No. 1 is compulsory. Attempt any three questions from the rest.

- 1. (a) Describe the following with the help of suitable examples for each: 10
 - (i) Vector Processing
 - (ii) Array Processing
 - (b) Define the following terms: 10
 - (i) Speed up
 - (ii) Data flow computing
 - (iii) Loop level parallelism
 - (iv) Uniform memory access model

10

		[2] 111002 011
	(c)	Define Amdahl's law in detail. 10
	(d)	Explain five applications of parallel
		computing. Also discuss the various levels
		of parallel processing. 10
2.	(a)	Differentiate between UMA, NUMA and
		COMA in details. 10
	(b)	Explain Flynn's classification of parallel
		computer systems with examples. 10
3.	(a)	Explain the algorithm for matrix
		multiplication in sequential circuits. 10
	(b)	What are the different data structures for
		parallel algorithms? Explain any two data
		structures with the help of an example. 10
4.	(a)	Explain the various visualization tools
		employed in performance analysis with the
		help of appropriate diagram. 10
	(b)	Explain the spin lock mechanism for
		synchronization among concurrent

processes.

- 5. Write short notes on the following: $4 \times 5 = 20$
 - (a) Data flow computing concepts
 - (b) Multithreaded Architecture
 - (c) Granularity
 - (d) PRAM