No. of Printed Pages : 8

BCS-054

BACHELOR OF COMPUTER APPLICATIONS (BCA) (REVISED)

Term-End Examination

June, 2024

BCS-054 : COMPUTER ORIENTED NUMERICAL TECHNIQUES

Time : 3 Hours

Maximum Marks : 100

Note: (i) Any calculator is allowed during examination hall.

- (ii) Question No. 1 is compulsory.
- *(iii)* Attempt any **three** more from the rest four questions.
- 1. (a) Solve the following system of linear equations using Gauss Elimination method: 5

4x - 5y + z = 22x + y - 2z = 7x + 4y + z = 5

x	<i>f(x)</i>
1	8
2	14
3	20
4	27
5	30

(b) Construct a difference table for the data : 5

(c) (i) Express the following numbers in floating point representation, if possible normalised, in the four digit mantissa, two digit exponent etc. if necessary, approximate, using chopping : 3

(1) 29.43

(2) - 0.0023946, and

(3) - 8976925

(ii) Find the product of the two numbers :

$$x_1 = -0.9089 \times 10^{19}$$

and $x_2 = -0.5492 \times 10^{-10}$

Show the mantissa and exponent of the product in normalized form. 2

- (d) Differentiate between direct methods and iterative methods for the solutions of linear algebraic equation with the help of suitable examples.
- (e) Find a real root of the following equation using Bisection method correct to two decimal places : 5

$$x^3 - 5x + 1 = 0$$

(f) Prove that :

$$\mu^2 = 1 + \frac{\delta^2}{4}$$

where symbols carry their usual meaning. 5(g) Solve by Gauss-Jacobi's iteration method, the following system of linear equations :

$$20x + y - 2z = 17$$
$$3x + 20y - z = -18$$
$$2x - 3y + 20z = 25$$

Perform two iterations.

P. T. O.

(h) The velocities of a car running on a straight road at intervals of 2 minutes are given below :

Time, in minutes	Velocity, in km/hr
<i>(t)</i>	<i>(v)</i>
0	0
2	22
4	30
6	27
8	18
10	7
12	0

Apply, Simpson's one-third rule to find the distance covered by the car in 12 minutes.

2. (a) Solve the following system of linear equations by Gauss-Seidel method : 6

$$5x + 2y + z = 12$$
$$x + 4y + 2z = 15$$
$$x + 2y + 5z = 20$$

Perform two iterations.

(b) From the following table, estimate f(7.5)using Newton's backward interpolation formula : 7

x	<i>f(x)</i>
1	1
2	8
3	27
4	64
5	125
6	216
7	343
8	512

(c)	For the tabulated function :	
-----	------------------------------	--

7

x	у
0	3
1	6
2	11
3	18
4	27

find $\int_{0}^{4} y dx$ by using Trapezoidal rule.

 3. (a) Find a real root of the following equation correct to three decimal places by using Regula-Falsi method : 6

$$x^3 - 3x + 4 = 0$$

(b) Find the smallest positive root of : 7

$$x^3 - 5x + 3 = 0$$

by using Newton-Raphson method.

(c) From the following table, estimate the number of students who obtained marks between 40 and 45 by using Newton's forward interpolation formula: 7

Marks	No. of Students
30—40	31
40—50	42
50—60	51
60—70	35
70—80	31

4. (a) The following table gives corresponding values of x and y. Construct the difference table and then express y as a function of x: 6

x	y
0	176
1	185
2	194
3	203
4	212
5	220
6	229

Also compute f(0.2).

(b) The value of a function f(x) are given below for certain values of x: 7

x	<i>f(x)</i>
0	5
1	6
3	50
4	105

Find the value of f(2) using Lagrange's interpolation formula.

(c) Determine f(x) as a polynomial of x for the following data, using Newton's divided difference formula : 7

x	<i>f(x)</i>
-4	1245
- 1	33
0	5
2	9
5	1335

5. (a) Using Runge-Kutta method of fourth order solve : 10

$$\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2} \text{ with } y(0) = 1,$$

at x = 0.2, 0.4.

(b) Use the Euler's method to obtain the approximate value of y(0.5) for the solution of the initial value problem $y' = 1 + y^2$, y(0) = 0. Take h = 0.1. 10

BCS-054